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ELASTIC DEFORMATION

Abstract. The paper considers researches dealing with the stability of thin-walled open-profile bars. The
widespread use of thin-walled bars in engineering constructions is resulted in a significant reduction in the weight
of these systems. Considering the relevance of the given problem, the stability of nonlinear deformation to the
central axis direction of the thin-walled bars has been investigated. The physical nonlinearity of the bar’s material,
dependence of the normal tension in its cross-section on the relative linear deformation has been taken as the form
of the dual cubic polynomial. An appropriate nonlinear differential complex equation for a single torsion angle
has been composed for the determination of the normal and touching tensions at bar’s cuts in the non-free torsion
of the longitudinal compression of the bar subjected to nonlinear deformations, and free touch tensions in free
torsion towards the direction of the thickness of the bar. In order to use the small parameter method for the solution
of this differential equation, the small parameter expression is composed of the elastic characteristics of the bar
material. The solution line of the form of the nonlinear differential equation due to the small number of parameters
is divided into differential equations, so that their solution is easily carried out. As a result, the expression of thin-

walled bar’s tension is obtained in the third approximation.
Keywords: Thin-walled bar, nonlinear deformation, open -profile, deplanation, non-free torsion, bending,

curling moment, sectorial field, sustainability.

INTRODUCTION

The tap of the thin-walled bars in different
constructions, especially in shipbuilding, aviation
industry, and construction of high-mile buildings, etc.,
caused a creation of the new computation theory. The
famous scientist, Vlasov’s fundamental works had an
irreplaceable role in the sphere of the creation and
development of this theory [1]. Taking into account that
the thin-walled bars squeezed in the longitudinal
direction are problematic ones, the significant
investigations of Peres N., Goncalves R., Camotim D.
and others along with Vlasov’s survey had a great
impact on their work on calculations for sustainability
[2-4, 9].

Unlike the closed contoured or the whole cut thin-
walled bars, the open-profile bars are slightly resistant
to torsion. According to the general theory of open

a)

profile thin-walled bars, in the torsion of such bars their
cuts are bent, thus various points take different
movements in the direction of the central longitudinal
axis of the bar. Such longitudinal displacements are
called deplanation.
PROBLEM STATEMENT

If the deplanation of the cuts of the bar doesn’t
occur freely, it implies that normal tensions arise in
non-free torsion. In this case touch tensions also arise
in the points of the cut of the bar. These touching

tensions are indicated as 7%, they are accepted like
regularly disseminated in wall thickness of the shaft

[1]. In the free torsion the tensile stresses varying by
linear law in the direction of bar thickness are called

S
free touching tensions, and are indicated as © (see Fig.
1).

b)

Figure 1. The touching tensions.
Non-free torsion; b) Free torsion
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When we indicate the momentum that is born of

internal touch forces in the free torsion with M b, and
the momentum that is born of touch forces in the non-

free torsion with M b, the full torque momentum is
taken as follows:

MbZMb +vb (1)

The shift (deplanation) u of any point of the cut of
the bar to the longitudinal axis x can be taken as follows

[2]:
Sab

t o

U =—a(x)-afs), @

here a(X)— is the relative torsional angle of bar

, which is the function of x variable, a)(s)—is the

sectorial area of S function. Sectorial area as rotation of
radius-vector that takes its beginning from any polar
point k is assumed as double area resulting from the
movement of the last (the second) point on the middle
line of the bar wall (Fig. 2).

[\Jlg

Figure 2. The sectorial area.

The negative symbol in Eq. (2) indicates the
counterclockwise rotation of the radius-vector.
Considering that the bar material is non-linear elastic,
we find normal tension in its most extreme non-free
torsion in the cut of the bar as follows [5]:

_ 3
Oy = Eogx - Elgx’

©)
here E,, E; — are elastic constants of the bar
material, €x is the relative longitudinal linear
deformation.
Choosing the Method of Solution
Let’s make the last expression as follows:
2
o, =E,&, (1—V,B€X ), 4)
here V=—18§1h — is the small parameter
E h.

(o]
drawn from the elasticity of the bar material

(V<1)1ﬂ=1/£r$1.h.’gm.h._ is the

relative

deformity of the material due to the range of the
tolerance of the material [6].

Using Koshi dependences and considering Eq. (2),
we can write the following:

da(x) ofs),

X
dx (5)
here the single torsion angle a(x) equals to
derivative of @ — through x variable:

déo

o =——
dx

Taking into account the last equation, we can
substitute Eq. (5) with Eq. (4) and have:

e R, )

Considering the following equilibrium Eqg. (6) we
determine the touching tensions:

o, =-E,
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oo, Ot

+ — =20, from here

ox 0s
* 9o 4% d(d20)’;
= [ Dugs=E, wds—vp-2 )’ ds
‘ ! ox dx-([ 'Bd[dxj-([

U]

We take the last equation and multiply it with the
thickness of the bar wall t and get the intensity of the
flood of the forces touching along its wall:

Tt:—j a@XXtd s=E, (;:(Hj wtds— v ( j! )\tds

0 0

@)
In Eq. (8) we mark tds=dF andz-t= q, but integrals are indicated as follows:

-S

D

Oty 0 O Cmmy

a@dF — sectorial static momentum (unit of measurement sm%),

-J =

2 s . .
> @ “dF — sectorial inertial momentum (unit of measurement sm®).

Considering these signs, we make Eq. (8) in the following form [7]:

d*e a2\’
q=E,|—S, —,6’ | -] @’dF
dx® dx ¢
o )
We define the M momentum due to arrow passing through the k pole of the tensile forces in the non-free
torsion. As it is seen from Fig. 3, sm® is polar momentum of elemental force qods = q - d@ (here d@ = pds —
is the growth of the sectorial area).

Figure 3. Determination of momentum of the touched force.

Momentum alternative M is written as follows:

— 420 d(d%) ;
szl qdew = E, Wl da).l‘ a)dF—vﬂ-&[dsz i dw! w*dF

here integration is carried out on all F areas.
We get this equation through partial integration:
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— 3 2\3
My =E, d—f(wj a;dF—JwJ—vﬁ-i(d fj (wj o’dF - | co“dF]
dx ‘ dx{ dx :

F (10)

In the definition of the sectorial area the starting position of the radius-vector is determined by the fact that
the exact sectorial static momentum of the field is zero, that is:

S,¢ =] @dF=0
F (11)
Realization of the Method
Taking into consideration the above-mentioned symbols, we put Eq. (10) in this form:
— d%0 d(d20)
Mo =—E,|J, -~ —VB-—|—— | -| o] &’dF-[ o’dF
dx dx{ dx ; ‘
(12)

We can write the momentum of the tensile forces of the profile that are created by the free torsion as follows:

déo

My =GJ, -—
“ dx (13)

here GJy is rigidity of profile in torsion, Jx is inertia momentum of torsion. We can write the equation in the
following way (if profile consists of rectangle):

Ji :%772 S 'ti3’
=)

here S;is the length of the i small wall, t; is the thickness, and 7 — is the ratio that is the basis of the shape of

the cut. The unit of Jx measurement is sm*.
According to Eqg. (1) the general torsional momentum equals to the sum of Eq. (12) and Eq. (13):

d%o d (d20Y , do
M, =—E|J -——v . dF — dF | |+GJ, —
b ol: o % ( j (wi @ _[ @ K dx

(14)

dx® Tdx | dx? 4
(15)

This equation (Eq. 15) is the nonlinearial differential equation of the non-free torsion of the open profile thin-
walled bar.

Let’s express touching forces with the following new B(x) function of the momentum of the torsional forces
in non-free torsion:

9B _W,

X (16)

here B is called bending — torsional bimoment (bumper), or simply bimoment, its unit of measurement is kN-
sm2.
In the process of comparing Eg. (6) and Eq. (12) we get:

My = 9% o
dx w 17)
While comparing Eq. (16) and Eq. (17) we get:
B-w
-

(18)
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We can see from here that, the normal tensions in the non-free torsion are proportional to the bimoment, and

whileitiso, =0, B =0 is obtained.

Placing Eq. (16) in Eq. (12) we integrate according to x and get the following:

dx?

2
B-—g|J .0 e—vﬂ(

20
dx?

T (wl o’dF - | a)“dFJ

F (19)

We differentiate both sides of Eq. (15) according to x and get:

E

dx’ dx’? 4

4 2 27)\3 2
0 ‘]wd e_vﬂ;?(d 0} (a)j a)adF—j 604dFJ —GJkd—0=de =mb’

! dx>  dx
(20)

Here my is the intensity of the external bending forces and we accept it as a positive quantity, because My

decreases while the value of x increases.

First of all, let’s look at the existence form of the two symmetry arrows of the bar cut (double-headed form)
(Fig. 4, a). Such bar with length of 1 is influenced by the squeezing P force in the direction of the centre axis x [7].

D-the centre of bending

A

Figure 4. a) Double-headed cut; b) About computing the torque of the squeezing force.

Let’s assume that all the longitudinal fibers except
the central fibers are bending from the given force (to
the direction of x arrow), i.e. the form of the loss of the
tolerance in the torsion of the bar. When looking
through the free edge of the bar at the x arrow we accept

that the positive direction of the @ rotation angle of any
cut of the bar is turning counterclockwise [8].

Before deformation, accepting the fact that dF
elemental pitch fits to any fiber in the cut of the bar
parallel to x axis, after the torsion the bending radius of

or considering that pd@ = wdX it will be like:

d?e
m,=—0—

dx® ¢

the very fiber will have the curve shape on the surface
of the p circular cylinder (Fig. 4, b). Let’s mark the

vertical fiber and angle of the touch to this curve with
v . The o - dF elemental force that effects the fiber
is spinning like Y angle, creating the momentum
around the x arrow, will also be expressed as oyl F

, and the intensity of the full torque momentum will be
expressed as follows:

fi%ﬁlj(jp’
dx 1)
2
2 dF =—O'd—28.]p,
dx
(22)

here J, is the polar inertia momentum due to the centre of the cut. Writing Eq. (22) for Eq. (20), we get the

following nonlinear differential equation [10,11]:
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d‘e d? (d2eY’ \ , d26
Ey| _Vﬂ'W[dxzj (wl wdF—! w*dF +(aJp—GJk)d7=o, .
23

We solve this complex differential equation by using the small parameters method. For this purpose we put
Eqg. (23) in the following form:

4 2 27)\3 J —GJ 2
d g—vﬁ-d—(d 9] [a)j a)ng—J‘ a)4dF]+a i . 9_0

4 2 2 2
dx J, dx°dx ! a E.J, dx 23)
We take the solution of the last equation in the following order for a small parameter:
0=0,4V0+..=> V"0, (n>0)
-0 (a)

We write (a) in the same equation and obtain the following linear differential equation system (the first two
equations of the system were shown):

d*6, , %" Jp =Gy d*0

0 :0
dx* EJ, dx? (24)
46, Ouwo)'J,-GJ, d%, g d*(d%,Y
dx4l " E 3 . dle A S a)j w3dF_I o'dF
oY w w F F (25)

The following substitution was accepted in Eq. (24):

oY o (26)

We obtain its solution through the following way:

d?e, .
——>=C;sink x+C, cosk,x
dx (27)
Since the boundary conditions are
C,=0,C,#0
. nzw
we get Sink 1 =0; K, 1 =nz or k, = T
Accepting n=1, we write k0 = 7[/| in Eg. (26) and find the initial cost of the crisis tension:
n’E,J, GJ,
Op(o) = +
SN J
P " (28)

Similarly to the strongest fasteners of the sharpest ends of the bars, we can write Eq. (28) in the following
way:

__~'8, 6,
b(o) = 2
(/’ll) J p J p (28!)
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Here the length coefficient of the bar may be equal to 2z = 0,5 . If one of the cutting edges of the bar is tightly
fastened and the other one is rolling & = 0,7 is accepted.

Taking into account C, = 0, Eq. (27) takes the following form:

2
d—62’° =C,sink x
dx (29)
Considering Eq. (29), the following complex differential in Eq. (25) is defined as:
d2 (d2,Y 3 9
—2[ 2°j = Cf(—zkoz sin k0x+zko2 sin3koxj
dx“ { dx (30)
Subsequenty, placing Eq. (30) in Eq. (25) we get:
4 2 3
d fl +k?2- d fl = ﬁcf -(—§kj sink0x+9k§ sin3koxJ of o*dF - o'dF
dx dx* J, 4 4 . ! 31)
here
W2 Oy Jp — Gy
o=
Eo‘](u (32)
we accept the solution of the differential in Eg. (31) in the following way:
2
d—fl = D, sink,x+ D, cosk,x + CkZ(asin k0x+bsin3k0x)-ﬁ a)I w*dF —J' w*dF
dx J
@ F F (33)
by substituting Eq. (33) in Eq. (25), we get equations a and b:
3 1 9 1
a=->.—"—, b="-—",
4 of -1 4 op -1 (34)
here

Let’s assume that the cutting edges of the bar do not rotate in the flat shape. In this case, the boundary
conditions of the equation will be as follows:

x=0, x=I oldugda &=0;

35
x=0, x=1 oldugda d—0=0 39
dx

We write Eq. (29) and Eqg. (33) equations to their places in expression a and get :

2 2 2
d f:d 2" +vCI 6} =C,sink, x+
dx dx dx

2] F

+V Dlsinklx+ka02(asinkox+bsin3k0x)Jﬁ(a)J. w3dF—J. a)“dF]:l
F
(36)
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We get the last equation by integrating it:

do do, de, G,

—= +V—==——-c0sk X—

dx  dx dx K,

—V ichosk1x+ka§ icoskox+icos3kox v a)J- a)SdF—j *dF | |;
K k 3k I, )

1 0 (o] 2]

1

Hef o]

0

=0 +VvO :—&sink X—V iD sink.x+C23| a-sink x+93in3k X |-
0 1 kz (o] kz 1 1 1 0 9 0

¢ @7
Substituting Eq. (37) in the boundary conditions of Eq. (35), we get:
a6 Y &+kao(a+9j-ﬁ of o*dF | o'dF ||=0;
dx|x =0 K, |k 3) 3,1 ]
a6 =0; &coskol +V &coskll +Ck,| acosk,| +9c033kolj-
dx|x =1 K, K, 3
ﬁ(a}j @ dF —I a)AdFJ:I =0;
‘]w F F
0|x:0 = 0’
6 , =0; —C—;sin k,I -V Rzlsin k| + Cf(asin k| +Esin3kolj-
x % k. 9
ﬁ(a)J‘ »*dF —I a)4dFJ:| =0
‘]a) F F
(38)
From the first of the conditions of Eq. (38) we get:
ClS - _ ko k1
vk, ’B(aer) a)I »°dF —j o*dF
J 3 F F
¢ (39)

Having written the last expression in the place of other conditions of Eg. (38), we obtain the following algebric
equations for C; and D, constants:



.|
[EESY] |

Wschodnioeuropejskie Czasopismo Naukowe (East European Scientific Journal) #11 (51), 2019 25

c a-cosk,| +9c053kol
—L| cosk, I - 3
K b
o a+i
3
. b .
c a-sink,l +—sin3kI
=Ll sink, | - J
k2| b
0o a+i
3

a-cosk,I +gcos3kol

+v—| cosk, | — =0
|(1 a+9
3
: b
a-sink | +—cos3k,I
+V—-| sink | - % =0
1 a+—
3 (40)

Making the Eq. (40) system’s determinant equal to zero for getting the smallest value of the ki, we obtain the

following complex algebraic equations system:

acosk,l + t;cos3kol

asink,| +gsin3kol

cosk, | - sink,l — +
2 Y 1
Kk, a+ a+9
3 3
, b . b
asink, I +—=sin3kI acosk,l +—cos3k,|

L | 9 3

+——| sink,| - b cosk,l — 0 =0
o™l a+— a+—
3 3

Defining the minimum equation for the coefficient ki through numerical methods from the last equation and
writing it in Eq. (32) we determine the crisis tension - Oy(1) in the first approach:

k’E,J, +GJ,

Ob(1) =

I (41)

Analogically, as described above, by keeping the first two boundaries of the expression (a) and having
written in the differential Eq. (23') we get appropriate Kk, = 27z/| coefficient, and the crisis tension Oy(2)

according to the N = 2 condition of the small parameter, i.e. due tov® — a . Thus, we determine the crisis tension

in the second approximation of thin-walled bar:

o-t()”) = Op(0)

Numerous calculations have shown that, the
difference between the sum of the first two limits of Eq.

(42) and (0'5') — the first approximation) the second

approximation is 1,64%. Therefore we can be satisfied
with that the equation can be solved by the solution in
the second approach.
CONCLUSION

The problem of clamping resistance in the centre
of the thin-walled open profile bars has been
extensively studied. For the first time, the nonlinear
elastic property of the material of the bars is taken into
account, in addition, the nonlinear differential
equilibrium equation for the determination of crisis
tension has been compiled. The smallest parameters
method, which is most optimal for determining the
crisis tension in the differential equation, has been used.
As a result, the complex nonlinear differential equation

+ Vo-b(l) + VZO'b(Z)

(42)

is divided into several simple linear differential
equations and their solution provides the satisfactory
results specially in the second approximation.
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DEVELOPMENT AND IMPROVEMENT OF THE SEDIMENT DESIGN FOR HYDRO-POWER
ENGINEERING AND IRRIGATION

AHHoTanus. B crartee paccMaTpuBalOTCd M AHAJIM3UPYIOTCS pPAa3JIMYHbIE THIIBI OTCTOMHHMKOB (IO
KOHCTPYKTHUBHBIM CXE€MaM, [0 PeXXUMY IIOTOKA), U3yueHa JUHAMHKA OCAXICHHSI M CIOCOOOM IIPOMBIBKH HAHOCOB.
JlaHbl peKOMeH1aluy 110 UCIOIb30BAaHUIO B THIPOIHEPIETUKE U UPPUTALIMY PA3HBIX KOHCTPYKIUI OTCTOMHUKOB.

Abstract. Different types of sedimentation basins are considered and analyzed in the article on constructive
schemes, the flow regime, the dynamics of sedimentation and the method of washing of sediments, and the

recommended improvement for hydropower and irrigation of various sedimentation tanks have been studied.
Knroueswvie cnosa: nomokKu, OcanC()eHuﬂ, HAHROCHL, d1emMenmbl, KOHCMPYKYUuu, uppucayus, 4acmuybsl.
Key words: flows, sediments, deposits, elements, structures, irrigation, particles.

Ouucmka 600wl
YEeHMPaIu308aHHO20 000CHAOICEHUS U KAHATUZAYULL.

OTCTOWHUKN TIPENCTABISAIOT COO0M pe3epByaphl
WIK OTKPBITBIE E€MKOCTH, B KOTOPBIX METOJOM
OTCTaWBaHUs YAANSIOTCS W3 BOJBI MEXAaHHUYECKHE
mpuMmecHn. B Xoge 9TOro  mporecca  YacTHIIBI
JUCTIEPCHOHHOM (ha3bl B 3aBHCHMOCTH OT IUIOTHOCTH
BEIIeCTBa JHOO BCIUIBIBAIOT HAa MOBEPXHOCTH BOJEI,
00 OCearoT Ha JHO pe3epByapa. YacTHIbI, OCeBIIHE
Ha JTHO, 00pa3yIoT ocaJlok. B pse ciydaes ocaxaeHue
CONPOBOXKIAETCA YKpyNHeHHeM yactull. OTcranuBaHue
BOABl  SIBIISIETCSL  JOBOJIBHO  PacTpOCTPaHEHHBIM
CrocoooM yaaneHust rpyOOIUCTIEPCHBIX
MEXaHHUYECKUX MPUMECEH. ITOT METOJT IPUMEHSETCS B
cucTemMax THUAPOY3JIOB, IIEHTPATU30BaHHOTO
BOJIOCHAOXKEeHMST W KaHajau3amuk, Ha [OC,

MemooomM  OMmCMaueaHusl npumensiemcs Hd

2UOPOCOOPYIHCEHUSAX, 8  CUCMEMAX

HPPUTAIIHOHHBIX COOPYKECHHUAX, a TAKXKE MPU OUHUCTKE
KOMMYHAJIBHBIX CTOYHBIX BOJ M ITOCJIE OHOJIOTHYECKON
OYHCTKHU CTOKOB [2, 3].

Ha nacocusix cranmmsax u I'DC mocrymatomnme
BOABI U3 OTKPBITBIX MCTOYHHKOB IOABEPraroTCs
OTCTaWBAaHUIO JUII TOTO, 4YTOOBI TPENOTBPATUTH
WCTHpPaHME JIoNacTe TUAPOTYpOHH U YacTeli HacoCOB
TBEpAbIMH TpUMecsIMH pa3MmepoMm Oornee 0,25 mm.
IIpuMeHeHHe  OTCTOMHHMKOB B HPPUrallMOHHBIX
cucTeMax Ienecoo0pa3Ho, dYTOOBl HE JOMyCTUTH
3aCOPEHHsSI NIIOM OPOCHTENBHBIX KaHAJIOB.

B cucremax 1eHTpaqTn30BaHHOTO BOJOCHAOXKEHNUS
OTCTOWHUKH  TPUMEHSIOTCS HAa  BOJOOYHCTHBIX
CTAHIUSAX, IS TPEIBAPUTEIIFHOTO OCBETICHUS BOIBI C
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