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Abstract. The paper considers researches dealing with the stability of thin-walled open-profile bars. The 

widespread use of thin-walled bars in engineering constructions is resulted in a significant reduction in the weight 

of these systems. Considering the relevance of the given problem, the stability of nonlinear deformation to the 

central axis direction of the thin-walled bars has been investigated. The physical nonlinearity of the bar’s material, 

dependence of the normal tension in its cross-section on the relative linear deformation has been taken as the form 

of the dual cubic polynomial. An appropriate nonlinear differential complex equation for a single torsion angle 

has been composed for the determination of the normal and touching tensions at bar’s cuts in the non-free torsion 

of the longitudinal compression of the bar subjected to nonlinear deformations, and free touch tensions in free 

torsion towards the direction of the thickness of the bar. In order to use the small parameter method for the solution 

of this differential equation, the small parameter expression is composed of the elastic characteristics of the bar 

material. The solution line of the form of the nonlinear differential equation due to the small number of parameters 

is divided into differential equations, so that their solution is easily carried out. As a result, the expression of thin-

walled bar’s tension is obtained in the third approximation.  

Keywords: Thin-walled bar, nonlinear deformation, open -profile, deplanation, non-free torsion, bending, 

curling moment, sectorial field, sustainability. 

  

INTRODUCTION 

The tap of the thin-walled bars in different 

constructions, especially in shipbuilding, aviation 

industry, and construction of high-mile buildings, etc., 

caused a creation of the new computation theory. The 

famous scientist, Vlasov’s fundamental works had an 

irreplaceable role in the sphere of the creation and 

development of this theory [1]. Taking into account that 

the thin-walled bars squeezed in the longitudinal 

direction are problematic ones, the significant 

investigations of Peres N., Goncalves R., Camotim D. 

and others along with Vlasov’s survey had a great 

impact on their work on calculations for sustainability 

[2-4, 9].  

Unlike the closed contoured or the whole cut thin-

walled bars, the open-profile bars are slightly resistant 

to torsion. According to the general theory of open 

profile thin-walled bars, in the torsion of such bars their 

cuts are bent, thus various points take different 

movements in the direction of the central longitudinal 

axis of the bar. Such longitudinal displacements are 

called deplanation.  

PROBLEM STATEMENT 

If the deplanation of the cuts of the bar doesn’t 

occur freely, it implies that normal tensions arise in 

non-free torsion. In this case touch tensions also arise 

in the points of the cut of the bar. These touching 

tensions are indicated as 
..sq , they are accepted like 

regularly disseminated in wall thickness of the shaft 

[1]. In the free torsion the tensile stresses varying by 

linear law in the direction of bar thickness are called 

free touching tensions, and are indicated as 
s (see Fig. 

1). 

 

а)     b)  

 

   
 Figure 1. The touching tensions. 

Non-free torsion; b) Free torsion 
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When we indicate the momentum that is born of 

internal touch forces in the free torsion with bM , and 

the momentum that is born of touch forces in the non-

free torsion with bM , the full torque momentum is 

taken as follows: 

 

bbb MMM +=
    (1) 

 

The shift (deplanation) u of any point of the cut of 

the bar to the longitudinal axis x can be taken as follows 

[2]:  

 

( ) ( ),sxu  −=
    (2) 

 

here ( )−x  is the relative torsional angle of bar 

, which is the function of x variable, ( )−s is the 

sectorial area of S function. Sectorial area as rotation of 

radius-vector that takes its beginning from any polar 

point k is assumed as double area resulting from the 

movement of the last (the second) point on the middle 

line of the bar wall (Fig. 2). 

 

 
 Figure 2. The sectorial area. 

  

The negative symbol in Eq. (2) indicates the 

counterclockwise rotation of the radius-vector. 

Considering that the bar material is non-linear elastic, 

we find normal tension in its most extreme non-free 

torsion in the cut of the bar as follows [5]: 

 

,3

1 xxox EE  −=
  (3) 

 

here −1, EEo  are elastic constants of the bar 

material, x  is the relative longitudinal linear 

deformation. 

Choosing the Method of Solution 

Let’s make the last expression as follows: 

 

( ),1 2

xxox vE  −=
 (4) 

here −= 2

..

1

hm

oE

E
v   is the small parameter 

drawn from the elasticity of the bar material 

( ) −= ..

2

.. ,1,1 hmhmv   is the relative 

deformity of the material due to the range of the 

tolerance of the material [6]. 

Using Koshi dependences and considering Eq. (2), 

we can write the following: 

( )
( ),s

dx

xd
x 


 −=

   (5) 

here the single torsion angle ( )x  equals to 

derivative of −  through x variable: 

 

dx

d
 −=

 
 

Taking into account the last equation, we can 

substitute Eq. (5) with Eq. (4) and have: 
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(6) 

Considering the following equilibrium Eq. (6) we 

determine the touching tensions: 
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We take the last equation and multiply it with the 

thickness of the bar wall t and get the intensity of the 

flood of the forces touching along its wall: 

 

 

( )( )






















−=




−=  tdss

dx

d

dx

d
vtds

dx

d
Etds

x
t

ss

o
x

s
3

0

3

2

2

0

3

3

0









  (8)  

In Eq. (8) we mark dFtds =  and qt = , but integrals are indicated as follows: 

−=−  dFS

s



0

 sectorial static momentum (unit of measurement sm4), 

−=−  dFJ

s

2

0

  sectorial inertial momentum (unit of measurement sm6). 

 

Considering these signs, we make Eq. (8) in the following form [7]: 
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 We define the bM  momentum due to arrow passing through the k pole of the tensile forces in the non-free 

torsion. As it is seen from Fig. 3, sm6 is polar momentum of elemental force  dqdsq =  (here −= dsd   

is the growth of the sectorial area). 

 

 
Figure 3. Determination of momentum of the touched force. 

 

Momentum alternative bM  is written as follows: 
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here integration is carried out on all F areas. 

We get this equation through partial integration: 
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In the definition of the sectorial area the starting position of the radius-vector is determined by the fact that 

the exact sectorial static momentum of the field is zero, that is: 
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     (11) 

 

Realization of the Method 

Taking into consideration the above-mentioned symbols, we put Eq. (10) in this form: 
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We can write the momentum of the tensile forces of the profile that are created by the free torsion as follows: 

 

 dx

d
GJM kb


=

      (13) 

 

here GJk is rigidity of profile in torsion, Jk is inertia momentum of torsion. We can write the equation in the 

following way (if profile consists of rectangle):  
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     (14) 

 

here Si is the length of the i small wall, ti is the thickness, and −  is the ratio that is the basis of the shape of 

the cut. The unit of Jk measurement is sm4. 

According to Eq. (1) the general torsional momentum equals to the sum of Eq. (12) and Eq. (13): 
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This equation (Eq. 15) is the nonlinearial differential equation of the non-free torsion of the open profile thin-

walled bar.  

Let’s express touching forces with the following new B(x) function of the momentum of the torsional forces 

in non-free torsion: 

 

 

bM
dx

dB
=

      (16) 

 

here B is called bending – torsional bimoment (bumper), or simply bimoment, its unit of measurement is kN-

sm2. 

In the process of comparing Eq. (6) and Eq. (12) we get: 

 

 

 J
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M x
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      (17) 

 

While comparing Eq. (16) and Eq. (17) we get: 






J

B
x


=

       (18) 
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We can see from here that, the normal tensions in the non-free torsion are proportional to the bimoment, and 

while it is 0=x , 0=B  is obtained. 

Placing Eq. (16) in Eq. (12) we integrate according to x and get the following: 
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We differentiate both sides of Eq. (15) according to x and get: 
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Here mb is the intensity of the external bending forces and we accept it as a positive quantity, because Mb 

decreases while the value of x increases. 

First of all, let’s look at the existence form of the two symmetry arrows of the bar cut (double-headed form) 

(Fig. 4, a). Such bar with length of l is influenced by the squeezing P force in the direction of the centre axis x [7]. 

 

 
D-the centre of bending 

Figure 4. a) Double-headed cut; b) About computing the torque of the squeezing force. 

 

Let’s assume that all the longitudinal fibers except 

the central fibers are bending from the given force (to 

the direction of x arrow), i.e. the form of the loss of the 

tolerance in the torsion of the bar. When looking 

through the free edge of the bar at the x arrow we accept 

that the positive direction of the   rotation angle of any 

cut of the bar is turning counterclockwise [8]. 

Before deformation, accepting the fact that dF 

elemental pitch fits to any fiber in the cut of the bar 

parallel to x axis, after the torsion the bending radius of 

the very fiber will have the curve shape on the surface 

of the  circular cylinder (Fig. 4, b). Let’s mark the 

vertical fiber and angle of the touch to this curve with

 . The dF  elemental force that effects the fiber 

is spinning like   angle, creating the momentum 

around the x arrow, will also be expressed as dF

, and the intensity of the full torque momentum will be 

expressed as follows: 
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or considering that dxd  =  it will be like: 
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     (22) 

 

here Jp is the polar inertia momentum due to the centre of the cut. Writing Eq. (22) for Eq. (20), we get the 

following nonlinear differential equation [10,11]: 
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We solve this complex differential equation by using the small parameters method. For this purpose we put 

Eq. (23) in the following form: 
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We take the solution of the last equation in the following order for a small parameter: 
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We write (a) in the same equation and obtain the following linear differential equation system (the first two 

equations of the system were shown): 
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The following substitution was accepted in Eq. (24): 
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We obtain its solution through the following way: 
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Since the boundary conditions are  
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l
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Accepting n=1, we write lko =  in Eq. (26) and find the initial cost of the crisis tension:  
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Similarly to the strongest fasteners of the sharpest ends of the bars, we can write Eq. (28) in the following 

way: 
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Here the length coefficient of the bar may be equal to 5,0= . If one of the cutting edges of the bar is tightly 

fastened and the other one is rolling 7,0=  is accepted.  

Taking into account 02 =C , Eq. (27) takes the following form: 
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Considering Eq. (29), the following complex differential in Eq. (25) is defined as: 
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Subsequenty, placing Eq. (30) in Eq. (25) we get: 
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here 
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 we accept the solution of the differential in Eq. (31) in the following way: 
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by substituting Eq. (33) in Eq. (25), we get equations a and b: 
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here      

o
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k
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Let’s assume that the cutting edges of the bar do not rotate in the flat shape. In this case, the boundary 

conditions of the equation will be as follows: 
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We write Eq. (29) and Eq. (33) equations to their places in expression a and get : 
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We get the last equation by integrating it: 
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Substituting Eq. (37) in the boundary conditions of Eq. (35), we get: 
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From the first of the conditions of Eq. (38) we get: 

 

 













−








+

+

−=

 dFdF
b

a
J

vk

k

D
v

k

C

C

FF

o

o

43

1

11

3

1

3




     (39) 

 

Having written the last expression in the place of other conditions of Eq. (38), we obtain the following algebric 

equations for C1 and D1 constants: 
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Making the Eq. (40) system’s determinant equal to zero for getting the smallest value of the k1, we obtain the 

following complex algebraic equations system: 
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Defining the minimum equation for the coefficient k1 through numerical methods from the last equation and 

writing it in Eq. (32) we determine the crisis tension - ( )1b  in the first approach: 

 

 

( )
p

ko

b
J

GJJEk +
= 

2

1

1

       (41) 

 

Analogically, as described above, by keeping the first two boundaries of the expression ( a ) and having 

written in the differential Eq. (23′) we get appropriate lk 22 =  coefficient, and the crisis tension ( )2b  

according to the 2=n  condition of the small parameter, i.e. due to av −2
. Thus, we determine the crisis tension 

in the second approximation of thin-walled bar: 
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Numerous calculations have shown that, the 

difference between the sum of the first two limits of Eq. 

(42) and (
( )
−I

b  the first approximation) the second 

approximation is 1,64%. Therefore we can be satisfied 

with that the equation can be solved by the solution in 

the second approach. 

CONCLUSION 

The problem of clamping resistance in the centre 

of the thin-walled open profile bars has been 

extensively studied. For the first time, the nonlinear 

elastic property of the material of the bars is taken into 

account, in addition, the nonlinear differential 

equilibrium equation for the determination of crisis 

tension has been compiled. The smallest parameters 

method, which is most optimal for determining the 

crisis tension in the differential equation, has been used. 

As a result, the complex nonlinear differential equation 

is divided into several simple linear differential 

equations and their solution provides the satisfactory 

results specially in the second approximation. 
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DEVELOPMENT AND IMPROVEMENT OF THE SEDIMENT DESIGN FOR HYDRO-POWER 

ENGINEERING AND IRRIGATION 

 

Аннотация. В статье рассматриваются и анализируются различные типы отстойников (по 

конструктивным схемам, по режиму потока), изучена динамика осаждения и способом промывки наносов. 

Даны рекомендации по использованию в гидроэнергетике и ирригации разных конструкций отстойников. 

Abstract. Different types of sedimentation basins are considered and analyzed in the article on constructive 

schemes, the flow regime, the dynamics of sedimentation and the method of washing of sediments, and the 

recommended improvement for hydropower and irrigation of various sedimentation tanks have been studied. 
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Очистка воды методом отстаивания применяется на гидросооружениях, в системах 

централизованного водоснабжения и канализации. 

 

Отстойники представляют собой резервуары 

или открытые емкости, в которых методом 

отстаивания удаляются из воды механические 

примеси. В ходе этого процесса частицы 

дисперсионной фазы в зависимости от плотности 

вещества либо всплывают на поверхность воды, 

либо оседают на дно резервуара. Частицы, осевшие 

на дно, образуют осадок. В ряде случаев осаждение 

сопровождается укрупнением частиц. Отстаивание 

воды является довольно распространенным 

способом удаления грубодисперсных 

механических примесей. Этот метод применяется в 

системах гидроузлов, централизованного 

водоснабжения и канализации, на ГЭС, 

ирригационных сооружениях, а также при очистке 

коммунальных сточных вод и после биологической 

очистки стоков [2, 3]. 

На насосных станциях и ГЭС поступающие 

воды из открытых источников подвергаются 

отстаиванию для того, чтобы предотвратить 

истирание лопастей гидротурбин и частей насосов 

твердыми примесями размером более 0,25 мм. 

Применение отстойников в ирригационных 

системах целесообразно, чтобы не допустить 

засорения илом оросительных каналов. 

В системах централизованного водоснабжения 

отстойники применяются на водоочистных 

станциях, для предварительного осветления воды с 
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