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INVESTIGATION OF THE STRESS STATE OF A COMPOSITE IN THE FORM OF A LAYER 

AND A HALF-SPACE WITH A CYLINDRICAL TUBE AT GIVEN STRESSES ON THE BOUNDARY 

SURFACES 

 

Abstract. A solution to the spatial problem of the theory of elasticity is proposed for a composite in the form 

of a half-space with a longitudinal thick-walled circular cylindrical tube and a layer rigidly attached to the surface 

of the half-space. Layer, half-space and pipe - elastic homogeneous isotropic materials different from each other. 

The stresses are set on the free surface of the layer and the inner surface of the pipe. At the boundary of the 

layer and half-space, as well as at the boundary of half-space and the outer surface of the pipe, the matching 

conditions are coupling. It is necessary to evaluate the stress state of a given composite. 

The solution of the spatial problem of the theory of elasticity is obtained on the basis of the generalized 

Fourier method in cylindrical coordinates associated with the pipe and Cartesian coordinates associated with the 

layer and half-space. Satisfying the boundary and coupling conditions, we obtain infinite systems of linear 

algebraic equations that are solved by the reduction method. As a result, displacements and stresses were obtained 

at various points of the layer, half-space, and pipe. 

Keywords: thick-walled pipe in half-space, composite, coupling conditions, generalized Fourier method 

 

Introduction 

When designing building structures, underground 

structures and communications, as well as in 

mechanical engineering, one has to deal with design 

schemes in which a composite medium is present. 

However, effective methods for calculating structures 

with several boundary surfaces (more than three) are 

practically absent. 

For such problems, the generalized Fourier 

method is used, which was supplemented by the 

theorems of addition of basic solutions [1]. 

Based on this method, problems are solved for a 

space with cylindrical cavities and various boundary 

conditions [2], half-spaces with a cylindrical cavity or 

inclusion [3–8], for a cylinder with cylindrical cavities 

or inclusions [9], for a layer with a cylindrical cavity, 

inclusion or tube [10–13]. 

Formulation of the Problem 

An elastic homogeneous layer of height h1 is 

rigidly connected with an elastic homogeneous half-

space. In a half-space, parallel to its surface, there is a 

circular cylindrical thick-walled pipe with an outer 

radius R1, and an inner one - R2. 

We will consider the pipe in a cylindrical 

coordinate system (ρ, φ, z), the half-space in the 

Cartesian coordinate system (x2, y2, z2), which is 

identically oriented and combined with the coordinate 

system of the pipe. The half-space boundary is located 

at y2=h2. The layer will be considered in the Cartesian 

coordinate system (x1, y1, z1) located on the lower 

surface of the layer (the interface between the half-

space and, accordingly, shifted relative to the half-

space coordinate system by y2=h2). 

It is necessary to find a solution to the Lame 

equation 𝛥�⃗⃗� 𝑗 + (1 − 2𝜎𝑗)
−1

𝛻𝑑𝑖𝑣�⃗⃗� 𝑗 = 0, where j – 

Poisson's ratio of the layer (j=1), half spaces (j=2) or 

pipes (j=3). 

Stresses are set on the upper boundary of the layer 

𝐹1�⃗⃗� 1(𝑥, 𝑧)|𝑦1=ℎ1
= 𝐹 ℎ

0(𝑥, 𝑧), the stresses on the inner 

surface of the pipe 𝐹3�⃗⃗� 3(𝜙, 𝑧)|𝜌=𝑅 = 𝐹 𝑅
0(𝜙, 𝑧), where 

�⃗⃗� 1 — displacement in the layer; �⃗⃗� 3— displacement in 

the pipe; 

𝐹𝑗�⃗⃗� 𝑗| = 2𝐺𝑗[
𝜎𝑗

1−2𝜎𝑗
�⃗� 𝑑𝑖𝑣 𝑈𝑗 +

𝜕

𝜕𝑛
�⃗⃗� 𝑗 +

1

2
(�⃗� × 𝑟𝑜𝑡�⃗⃗� 𝑗)]; 

𝐺𝑗 =
𝐸𝑗

2(1+𝜎𝑗)
; 𝜎𝑗, 𝐸𝑗 – Poisson's ratio and modulus of 

elasticity of the layer (j = 1), half-space (j = 2) or pipe 

(j = 3);  

 

𝐹 ℎ
0(𝑥1, 𝑧1) = 𝜏𝑦𝑥

(ℎ)
𝑒 1

(1)
+ 𝜎𝑦

(ℎ)
𝑒 2

(1)
+ 𝜏𝑦𝑧

(ℎ)
𝑒 3

(1)
 , 

𝐹 𝑅
0(𝜙, 𝑧) = 𝜎𝜌

(𝑅)
𝑒 1

(2)
+ 𝜏𝜌𝜙

(𝑅)
𝑒 2

(2)
+ 𝜏𝜌𝑧

(𝑅)
𝑒 3

(2)
   (1) 

 

are known functions; 𝑒 𝑗
(𝑘)

, j = 1, 2, 3 – are the unit 

vectors of the Cartesian (k = 1) and cylindrical (k = 2) 

coordinate systems. 

On the boundary of the layer and half-space, 

coupling conditions are given 

�⃗⃗� 1|𝑦1=0
= �⃗⃗� 2|𝑦2=ℎ2

,       (2) 

𝐹1�⃗⃗� 1|𝑦1=0
= 𝐹2�⃗⃗� 2|𝑦2=ℎ2

,     (3) 

at the boundary of the half-space and the pipe, the coupling conditions are given 

�⃗⃗� 2(𝜙, 𝑧)|𝜌=𝑅1
= �⃗⃗� 3(𝜙, 𝑧)|𝜌=𝑅1

,     (4) 

𝐹�⃗⃗� 2(𝜙, 𝑧)|𝜌=𝑅1
= 𝐹�⃗⃗� 3(𝜙, 𝑧)|𝜌=𝑅1

,    (5) 

where �⃗⃗� 2— - displacement in half space. 
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All known vectors and functions will be 

considered as fast falling to zero at great distances from 

the origin of the coordinate z for the tube and the 

coordinates x and z for the boundaries of the layer. 

Solving the Problem 

We take the basic solutions of the Lame equation 

in the form [1] 

 

�⃗� 𝑘
±(𝑥, 𝑦, 𝑧; 𝜆, 𝜇) = 𝑁𝑘

(𝑑)
𝑒𝑖(𝜆𝑧+𝜇𝑥)±𝛾𝑦; 

�⃗� 𝑘,𝑚(𝜌, 𝜙, 𝑧; 𝜆) = 𝑁𝑘
(𝑝)

𝐼𝑚(𝜆𝜌)𝑒𝑖(𝜆𝑧+𝑚𝜙); 

𝑆 𝑘,𝑚(𝜌, 𝜙, 𝑧; 𝜆) = 𝑁𝑘
(𝑝)

[(𝑠𝑖𝑔𝑛 𝜆)𝑚𝐾𝑚(|𝜆|𝜌) ⋅ 𝑒𝑖(𝜆𝑧+𝑚𝜙)]; 𝑘 = 1,2,3;   (6) 

 

𝑁1
(𝑑)

=
1

𝜆
𝛻; 𝑁2

(𝑑)
=

4

𝜆
(𝜎 − 1)𝑒 2

(1)
+

1

𝜆
𝛻(𝑦 ⋅); 𝑁3

(𝑑)
=

𝑖

𝜆
𝑟𝑜𝑡(𝑒 3

(1)
⋅); 𝑁1

(𝑝)
=

1

𝜆
𝛻;  

𝑁2
(𝑝)

=
1

𝜆
[𝛻 (𝜌

𝜕

𝜕𝜌
) + 4(𝜎 − 1) (𝛻 − 𝑒 3

(2) 𝜕

𝜕𝑧
)]; 𝑁3

(𝑝)
=

𝑖

𝜆
𝑟𝑜𝑡(𝑒 3

(2)
⋅); 

 𝛾 = √𝜆2 + 𝜇2, − ∞ < 𝜆, 𝜇 < ∞, 

 

where 𝐼𝑚(𝑥), 𝐾𝑚(𝑥) – are the modified Bessel 

functions; �⃗� 𝑘,𝑚, 𝑆 𝑘,𝑚, k=1, 2, 3 – are, respectively, the 

internal and external solutions to the Lamé equation for 

the cylinder; �⃗� 𝑘
(−)

, �⃗� 𝑘
(+)

 – are the solutions to the Lamé 

equation for the layer and half-space 

The solution to the problem will be presented in 

the form 

�⃗⃗� 1 = ∑ ∫ ∫ (𝐻𝑘
(1)(𝜆, 𝜇) ⋅ �⃗� 𝑘

(+)(𝑥1, 𝑦1, 𝑧1; 𝜆, 𝜇; 𝜎1)
∞

−∞

∞

−∞

3

𝑘=1

+ 

+𝐻𝑘
(1)(𝜆, 𝜇) ⋅ �⃗� 𝑘

(−)(𝑥1, 𝑦1, 𝑧 ; 𝜆, 𝜇; 𝜎1)) 𝑑𝜇𝑑𝜆,    (7) 

�⃗⃗� 2 = ∑ ∫ ∑ 𝐵𝑘,𝑚(𝜆) ⋅ 𝑆 𝑘,𝑚(𝜌, 𝜙, 𝑧; 𝜆; 𝜎1)𝑑𝜆

∞

𝑚=−∞

∞

−∞

3

𝑘=1

+ 

+∑ ∫ ∫ (𝐻𝑘
(2)(𝜆, 𝜇) ⋅ �⃗� 𝑘

(+)(𝑥2, 𝑦2, 𝑧2; 𝜆, 𝜇; 𝜎2)) 𝑑𝜇𝑑𝜆
∞

−∞

∞

−∞

3
𝑘=1 ,   (8) 

�⃗⃗� 3 = ∑ ∫ ∑ 𝐴𝑘,𝑚(𝜆) ⋅ �⃗� 𝑘,𝑚(𝜌, 𝜙, 𝑧; 𝜆) + �̃�𝑘,𝑚(𝜆) ⋅ 𝑆 𝑘,𝑚(𝜌, 𝜙, 𝑧; 𝜆)𝑑𝜆∞
𝑚=−∞

∞

−∞

3
𝑘=1 ,  (9) 

 

where 𝑆 𝑘,𝑚(𝜌, 𝜙, 𝑧; 𝜆),  

�⃗� 𝑘,𝑚(𝜌, 𝜙, 𝑧; 𝜆) �⃗� 𝑘
(+)(𝑥, 𝑦, 𝑧; 𝜆, 𝜇) and �⃗� 𝑘

(−)(𝑥, 𝑦, 𝑧; 𝜆, 𝜇) 

– are the basic solutions given by formulas (6), and the 

unknown functions 𝐻𝑘
(1)(𝜆, 𝜇), 𝐻𝑘

(1)(𝜆, 𝜇), 𝐵𝑘,𝑚(𝜆), 

𝐻𝑘
(2)(𝜆, 𝜇), 𝐴𝑘,𝑚(𝜆) and �̃�𝑘,𝑚(𝜆) must be found from 

boundary conditions (1) and coupling conditions (2 – 

5). 

To transfer the main solutions between coordinate 

systems, we use the formulas [11]. 

To fulfill the boundary conditions at the upper 

boundary of the layer, we find the stresses for (7) and, 

for y1=h1, we equate the given 𝐹 ℎ
0(𝑥1, 𝑧1) one 

represented by the double Fourier integral. So we get 

three equations (one for each projection) with six 

unknowns 𝐻𝑘
(1)(𝜆, 𝜇), 𝐻𝑘

(1)(𝜆, 𝜇). 

To satisfy the conjugation conditions at the 

boundary of the layer and half-space in displacements, 

we substitute the right-hand sides (7) and (8) in (2). In 

this case, writing down expression �⃗⃗� 2(𝑥2, 𝑧2)|𝑦2=0, it is 

necessary to use the formulas for the transition from 

solutions 𝑆 𝑘,𝑚 of the cylinder to solutions �⃗� 𝑘
(−)

 [12, 

formula (7)]. In a similar way, we can write three 

additional equations for stresses (3). 

So we get nine infinite systems of equations with 

unknown functions 𝐻𝑘
(1)(𝜆, 𝜇), 𝐻𝑘

(1)(𝜆, 𝜇), 𝐻𝑘
(2)(𝜆, 𝜇) 

and 𝐵𝑘,𝑚(𝜆). 

The determinant  of this system has the form  

𝛥 = −64 ⋅ 𝛾9 ⋅ 𝜎3 ⋅ 𝑒−3𝛾(ℎ1−ℎ2) ⋅ 𝛷(𝛾)/𝜆6, where 

𝛷(𝛾) – the function, for > 0, has only positive values 

and does not vanish, it follows from this that this system 

of equations has a unique solution. 

We find the functions 𝐻𝑘
(1)(𝜆, 𝜇), �̃�𝑘

(1)(𝜆, 𝜇) and 

𝐻𝑘
(2)(𝜆, 𝜇) through 𝐵𝑘,𝑚(𝜆). 

To satisfy the coupling conditions at the boundary 

of the half-space and the pipe, we then equate ρ=R1 in 

(8) and (9). In (8) we decompose the basic solutions 

�⃗� 𝑘
(+)

 using [12, formula (8)], turning them into solutions 

�⃗� 𝑘,𝑚. The resulting vector, as well as vector (9), for 

ρ=R1, we substitute in (4). So we get three infinite 

systems of equations for the coupling of half-space and 

the pipe in displacements. This will fulfill condition (5). 

To fulfill the boundary conditions on the inner 

surface of the pipe, we find the stresses for (9) and 

equate, at ρ=R2, the given 𝐹 𝑅
0(𝜙, 𝑧), represented by the 

integral and the Fourier series. 

Having received 9 infinite equations, instead of 

𝐻𝑘
(2)(𝜆, 𝜇), we substitute the previously expressed 

functions through 𝐵𝑘,𝑚(𝜆), free ourselves from the 

series in m and the integrals in . As a result, we get a 

set of nine infinite systems of linear algebraic equations 

for determining unknowns 𝐵𝑘,𝑚(𝜆), 𝐴𝑘,𝑚(𝜆) and 

�̃�𝑘,𝑚(𝜆). These infinite systems have the properties of 

equations of the second kind and, as a consequence, the 

reduction method can be applied to them. 

Having solved this system of equations, we find 

the unknowns 𝐴𝑘,𝑚(𝜆), �̃�𝑘,𝑚(𝜆) and 𝐵𝑘,𝑚(𝜆). 

Found from the infinite system of equations 

𝐵𝑘,𝑚(𝜆), we substitute in the expressions for 
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𝐻𝑘
(1)(𝜆, 𝜇), 𝐻𝑘

(1)(𝜆, 𝜇) and 𝐻𝑘
(2)(𝜆, 𝜇). This will 

determine all unknown problems. 

Numerical Studies of the Stressed State  

Имеется упругое изотропное 

полупространство, в котором, параллельно его 

поверхности, расположена круглая 

цилиндрическая толстостенная труба. С 

поверхностью полупространства жестко сцеплен 

слой. Материал слоя – асфальтобетон, 

коэффициент Пуассона 1 = 0.1, модуль упругости 

E1=140 кН/см2. Полупространство – щебень и 

гравий укрепленные цементом, коэффициент 

Пуассона 2 = 0.25, модуль упругости E2=90 кН/см2. 

Труба – сталь, коэффициент Пуассона 3 = 0.25, 

модуль упругости E3=20000 кН/см2. Наружный 

радиус трубы R1=30см., внутренний R2=20 см. 

Расстояние от верхней границы слоя к центру 

трубы h2=45см. Толщина слоя h1=10см.  

With the weight of the processing equipment taken 

into account, on the upper boundary of the layer, the 

stresses  

𝜏𝑦𝑥
(ℎ)(𝑥, 𝑧) = −108 ⋅ (𝑧2 + 102)−2 ⋅ (𝑥2 + 102)−2, 

𝜎𝑦
(ℎ)

= 𝜏𝑦𝑧
(ℎ)

= 0 are given. On the inner surface of the 

tube, there are no stresses 𝜎𝜌
(𝑝)

= 𝜏𝜌𝜙
(𝑝)

= 𝜏𝜌𝑧
(𝑝)

= 0. 

A finite system of equations of order m = 8 was 

solved. The accuracy of the fulfillment of the boundary 

conditions for the indicated values of geometric 

parameters was equal to 10-3. 

In Fig. 1. stresses are presented on the upper and 

lower boundary of the layer along the x axis, at z = 0 in 

kN/cm2.  

 

  
a      b 

Fig. 1. Stresses at the boundaries of the layer, at z = 0: a - at the upper boundary (y1 = h1); 

 b - at the lower boundary (y1 =0); 1 –𝜎𝑥; 2 – 𝜎𝑧; 3 – 𝜎𝑦; 4 – 𝜏𝑥𝑦 

 

For given tangential stresses 𝜏𝑥𝑦 (Fig. 1a, line 4), 

significant normal stresses 𝜎𝑥 arise at the upper 

boundary (Fig. 1a, line 1), which decrease at the lower 

boundary, while remaining maximum. Stresses 𝜎𝑦 also 

appear at the lower boundary of the layer (Fig. 1b, line 

4), although they are set equal to zero at the upper 

boundary. Stresses 𝜎𝑧 at the upper and lower boundary 

of the layer do not differ significantly.  

In fig. Figure 2 shows the stresses on the pipe 

surfaces along the radii R1 and R2, at z = 0 in kN/cm2.  

The largest stresses that occur on the outer surface 

of the pipe are normal stresses 𝜎𝜙 (Fig. 2a, line 1), 

which at ϕ=0.98 have a negative extreme value  

𝜎𝜙= –0.084 kN/cm2, at ϕ = 2.16 a positive extreme 

value 𝜎𝜙= +0.084 kN/cm2. Small stresses 𝜎𝜌 also 

appear on the outer surface of the pipe in the upper zone 

(Fig. 2a, line 3).  

 

 
a       b 

Fig. 2. Stresses on the pipe surfaces, at z = 0: a –on the outer surface;  

b - on the inner surface; 1 –𝜎𝜙; 2 –𝜎𝑧; 3 –𝜎𝜌 
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On the inner surface, the stresses partially 

decrease (Fig. 2b). 

Conclusions 

The three-dimensional problem of the theory of 

elasticity for a multilayer medium consisting of a layer, 

half-space and a thick-walled pipe, which are 

interconnected by conjugation conditions, is solved. At 

the free boundary of the layer and the inner surface of 

the pipe, stresses are specified. 

The proposed solution method is based on the 

generalized Fourier method and allows determining the 

stress-strain state of the medium under study with a 

predetermined accuracy. 

Numerical studies were carried out for given 

nonzero tangential stresses on the layer surface. The 

analysis showed that the greatest attention should be 

paid to the normal stresses 𝜎𝑥 in the layer and 𝜎𝜙 in the 

pipe. 

The presented stress state graphs can be used to 

select geometric characteristics during the design of 

tunnels and underground utilities. 

Further research is relevant for more pipes. 
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