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OSCILLATIONS IN HYPOTHALAMIC-PITUITARY-ADRENAL AXIS 

 

Abstract. A structured model of the HPA axis that includes the glucocorticoid receptor (GR)is considered. 

The model includes nonlinear dynamics of pituitary GR synthesis. The nonlinear effect arises from the fact that 

GR homodimerizes after cortisol activation and induces its own synthesis in the pituitary. This homodimerization 

makes possible two stable steady states (low and high) and one unstable state. The model includes also delay on 

stress. It is shown that concurrence between trajectories of dynamical system, which are produced by the unstable 

manifold and the value of delay time τ produce slow oscillating asymptotic periodic oscillations of cortisol with a 

period, which is grater then 2τ . It is shown that such oscillations exist only in an interval τ1 < τ < τ2, where exact 

formulas for τ1 and τ2 has been obtained. Such oscillation arise when an initial values of stress are lager of some 

threshold. 
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Introduction 

We consider HPA dynamics which includes 

stored CRH, circuiting CRH and ACTH, cortisol and 

glucocorticoid receptor that plays a role of 'dispatcher' 

that drives by distributions of hormones in the system. 

Our model incorporate a self-upregulation of CRH 

release, a negative and positive feedback effect on 

cortisol in CRH synthesis and a delay in ACTH-

activated on cortisol synthesis [12]. Remind that 

hypothalamic-pituarity-adrenal (HPA) axis ia 

neuroendocrine system that regulates hormones. The 

regulation is mediated by the inhibition of peptide 

hormones such as corticotropin-releasing hormone 

(CRH) and adrenocorticotropic hormone (ACTH) by 

circulating glucocorticoids such as cortisol (CORT ). 

Notice that in this paper, we have not begun with 

local linear stability theory, because as noted by our 

experience suggests that, while as sited in [14]: 'Many 

experimentalists have excellent intuition about rates of 

change at their f ingertips, the abstraction of 

eigenvalues presents a road block'. Our model includes 

three equilibria states for HPA system, one of which is 

unstable and another two are stable. We developed a 

dynamical model of HPA axis to describe interactions 

between key hormones and the glucocorticoid receptor 

(GR). Notice that well known mediate feedback activity 

of cortisol. For example, in [8] it has been considered a 

model when in HPA system arise two attracting limit 

cycles over which cortisol and that ACTH oscillate with 

an ultraradian (hourly) rhythms. For our model, there are 

two oscillating states, one with lower cortisol level is 

associated with the normal state. Within this model, 

stress-induced secretion of CRH can trigger transition 

between normal and diseased states, respectively. Such 

simple attractor of the dynamical system of hyperbolic 

that contains two attractive fixed points and one 

repelling fixed point of codimension 1 (saddle type 

point) forms slow oscillating asymptotic periodic 

oscillations of cortisol in the HPA axis. 

In the present paper, we follow to [11] and discuss 

HPA axis model of [12] that capture the basic feedback 

mechanism and includes an intracellular glucocorticoid 

receptor GR as one of the four state variables of the 

dynamical system, where variables [CRH], [ACTH], 

[GR] and [COR] define concentrations. Here, [GR] is 

bounded to cortisol. The resulting complex COR- -GR] 

determines general behavior of solutions of the model. 

It turns out that GR := Φ[COR]), where Φ is a given 

nonlinear function (see, [11], Fig.1) which plays the 

mane role in the quantitative behavior of limit 

distributions of cortisol in a physiological system. 

We de ne [GR] := u and assume that: (1) Φ(I) ⊂ I 

for each uI, where I is an open bounded interval. Then 

from (1) it follows that all solutions of the problem are 

bounded for all t > 0. The phase diagram [11] shows 

that a state variable [GR] is a cubic type function of the 

concentration [COR] := u of cortisol. Hence, for a 

certain stress region, the system exhibits two stable 

steady states and one unstable steady state. 

It will be shown that a corresponding dynamical 

system in R3 (3D - dimensional space) can be reduced 

to the planar system with two delay equations: 

˙ (t) = y(t) - ρ1x(t),  (1) 

y˙(t) = -f (x(t - 1)) - ρ2y(t), (2) 

where ρ1 and ρ2 are given parameters. A 

function f is determined from a graphics of a 

function Φ: I→ I, which is determined from phase 

diagram of 'pitchfork' type that follows from computer 

experiments in [10]. 

Thus, HPA mathematical model can be reduced 

to the study of solutions for system (58,59). 

Equivalently, the planar system can be reduced to an 



44 Wschodnioeuropejskie Czasopismo Naukowe (East European Scientific Journal) #9(61), 2020  

 

autonomous second order differential-difference delay 

equation: 

ẍ + (ρ1 + ρ2)ẋ(t) + ρ1ρ2x(t) = -f (x(t - 1)), τ := 1(3) 

that explains oscillating behavior for solutions of 

delay differential difference equations. It is known that 

the delay system has a nonconstant periodic solutions 

with a period grater then 2 [9]. 

Below, using these mathematical results, we found 

that (for the HPA axis) there are slow oscillating 

asymptotically periodic solutions, which describe 

distributions of cortisol. It will be found a role of delay 

in the HPA problem. It turns out that oscillating 

solutions are stable if and only if 

τ1 < τ < τ2,   (4) 

where delay τ1 and τ2 are estimated exactly and 

ones depend on given parameters of the physiological 

problem. It will be found exact analytical formulas for 

τ1 and τ2, depending on parameters. 

Postulation of problem 

The HPA axis has three components which 

represent the hypothalamus, pituitary and adrenal. The 

equation for the hypothalamus is: 

𝑑𝐶

𝑑𝑇
=

𝐾𝑐+𝐹

1−
𝑂

𝐾𝑛

− 𝐾𝑐𝑑𝐶  (5) 

where − KcdC describes a constant degradation 

rate of CRH. Following [12] we assume that 
𝑂

𝐾𝑛
≪ 1. 

Then from (5) we arrive et 

𝑑𝐶

𝑑𝑇
= (𝐾𝑐 + 𝐹) (1 +

𝑂

𝐾𝑛
) − 𝐾𝑐𝑑𝐶. (6) 

(Here, all undetermined constants can be found in 

[12]). Next, from (6) it follows that if 𝐶 =
𝐾𝑐+𝐹

𝐾𝑐𝑑
, then 

we can put 
𝑑𝐶

𝑑𝑇
≡ 0 with accuracy O(ϵ), where 𝜖 =

𝑂

𝐾𝑛
. 

We write for the hypothalamus [12] 

𝑐̇ =
1+𝑓

1+
0

𝑘1

− 𝑘𝑐𝑑𝑐,   (7) 

for the pituitary 

 𝑎̇ =
𝑐

1+
𝑜

𝑘2

− 𝑘𝑎𝑑𝑎,  (8) 

Equation (8) models the degradation rate of ACTH 

and ACTH production terms with a cortisol inhibition 

factor, 

𝑟̇ =
(𝑜𝑟)2

𝑘+(𝑜𝑟)2 + 𝑘𝑐𝑟 − 𝑘𝑟𝑑𝑟  (9) 

For the adrenal we have 

𝑜̇ = −𝑜 + 𝑎(𝑡 − 𝜏)  (10) 

with delay response τ . 

If in (8) we put c := a (for unification with [5]) and 

consider only equilibrium c˙ = 0, then we obtain the 

well-known model [5] 

𝑎̇ =
𝐴

1+𝑝2𝑜(𝑡)𝑟(𝑡)
− 𝑝3𝑎(𝑡),  (11) 

𝑟̇(𝑡) =
𝑝4

𝑝4+(𝑜(𝑡)𝑟(𝑡))
2 + 1 + 𝑝5 − 𝑝6𝑟(𝑡), (12) 

𝑜̇(𝑡) = −𝑜(𝑡) + 𝑎(𝑡 − 𝜏).  (13) 

as a particular case of the model [12] to the 

model [5]. Thus, we have a projection of trajectories of 

the dynamical system from R4 into R3. The assumption 

c˙=0 determines only c- null-cline that describes a 

curve 

1+𝑓

1+
𝑜

𝑘1

− 𝑘𝑐𝑑𝑐 = 0  (14) 

The projection on R3 require that must be at least 
𝑜

𝑘1
≪ 1. We neglect this small term in the first 

approximation. 

Remind [12] that stress to the HPA axis (f) 

stimulates the hypothalamus to secrete CRH(c). 

Further, CRH(c) signals the induction of ACTH 

synthesis (a) in the pituitary. Thus, our assumption 

means that a velocity of stimulation of ACTH signals 

is constant, i.e. 𝑐 =
1+𝑓

𝑘𝑐𝑑
. Mathematically, it means that 

the function µ =or can be considered as a parameter (et 

lest asymptotically). Effect of changing of parameters 

on c - null-cline has been considered by Kim et. al. [8]. 

3 Determination of fixed points for the HPA 

problem 

It is known that these equations have three positive 

steady states (there is also negative state which is not 

used). These steady states arise beacons of 

homodimerization of the GR with cortisol. From ([12], 

Fig.1) it follows that o = f1(p6) and r = f2(p6), where 

another parameters are fixed. Here, f1 and f2 are 

multivalued functions. 

𝑑𝐶

𝑑𝑇
= (𝐾𝑐 + 𝐹) (1 +

𝑂

𝐾𝑛
) − 𝐾𝑐𝑑𝐶. (15) 

Next, from (6) it follows that if 𝐶 =
𝐾𝑐+𝐹

𝐾𝑐𝑑
, then we 

can put 
𝑑𝐶

𝑑𝑇
= 0 with accuracy O(ϵ), where 𝜖 =

𝑂

𝐾𝑛
. 

As a result, we can consider the following 

approximation [5]: 

𝑎̇(𝑡) =
𝐴

1+𝑝2𝑜(𝑡)𝑟(𝑡)
− 𝑝3𝑎(𝑡), (16) 

𝑟̇(𝑡) = −
𝑝4

𝑝4+(𝑜(𝑡)𝑟(𝑡))
2 + 1 + 𝑝5 − 𝑝6𝑟(𝑡), (17) 

𝑜̇(𝑡) = −𝑜(𝑡) + 𝑎(𝑡 − 𝜏).  (18) 

The main role hear plays equation (17), which 

describes the production of GR in the pituitary. The 

term −
𝑝4

𝑝4+(𝑜(𝑡)𝑟(𝑡))
2 + 1 is in Michaelis-Menten form 

(see, [12] beacons we assumed that the bound 
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glucocorticoid receptor (or) in the dimensionless form 

dimerizes with fast kinetics, so that the amount of dimer 

is in constant quasi-equilibrium and ones depends on 

the excess of or. The model also assumes that cortisol 

(o) and the glucocorticoid receptor (r) bind to each 

other with very fast kinetics, which is compared to the 

rate of change of the 4 state variables (A, C, O, and R), 

so that OR stays in quasi-equilibrium as well. These are 

reasonable assumptions, given that high affinity 

receptor-ligand kinetics are often much faster than 

enzyme kinetics, as is assumed in the Michaelis-Menten 

equation (see, [12]. Equation (17) models a linear 

production term Kcr and a degradation term KrdR for 

pituitary GR production. Below, in the dimensional 

form for the model, these coefficients are defined as 1 

and p6, respectively. 

4 Remark 1 

Notice that (c) represents the level of circuiting 

CRH, (a) defines the level of circuiting ACTH, (r) 

describes the level of glucocorticoid receptor in the 

pituitary, and (o) is the level of circuiting cortisol. In 

equations for (a) and (r), the cortisol - receptor complex 

(or) is assumed to form and dissociate under fast 

dynamics [8]. Below mathematically it will be proved 

that it is indeed true beacons there are so-called slow 

oscillating distributions of cortisol [8]. It has been 

shown that this level can be approximated as 'steady 

state' by the production (or). 

Indeed, let us de ne µ = or. Then the origin problem 

in R3 can be unfolds as the system in R3, so that 

𝑎̇ =
𝐴

1+𝑝2𝜇
− 𝑝3𝑎,  (19) 

𝑟̇ = −
𝑝4

𝑝4+𝜇2 + 1 + 𝑝5 − 𝑝6𝑟, (20) 

𝑜̇(𝑡) = −𝑜 + 𝑎,  (21) 

𝜇̇ = 𝑜̇𝑟 + 𝑟̇𝑜.  (22) 

where, in (21), a:= a(t) or a:=a(t-τ ). 

From these equations it follows that fixed points 

lie on the curves 

𝑎 =
1

𝑝3
(

𝐴

1+𝑝2𝜇
),  (23) 

𝑟 =
1

𝑝6
(−

𝑝4

𝑝4+𝜇2 + 1 + 𝑝5). (24) 

Since fixed points lie on diagonal o = a, 

multiplying these relations and substituting o = a, and 

putting at a fixed point 𝜇̇ = 0, we obtain that µ is a 

solution of 4 order algebraic equation. Indeed, 

𝑜𝑟 = 𝜇 =
1

𝑝6𝑝3
(

𝐴

1+𝑝2𝜇
) (−

𝑝4

𝑝4+𝜇2 + 1 + 𝑝5). (25) 

Let 𝜈 =
𝐴

𝑝6𝑝3
.Then from (25) we arrive at𝑝4𝜇4 +

𝜇3 + (𝑝2𝑝4 − (1 + 𝑝5))𝜇2 + 𝑝4𝜇 − 𝜈𝑝5𝑝4 = 0.

 (26) 

From Descartes' rule it follows that this equation 

has 3 or 1 positive roots and 1 negative root which can 

not be considered. Descartes' rule means that the 

number of positive roots of the polynomial is either 

equal to the number of sign differences between 

coefficients, or is less than it by an even number. From 

this property it follows that if we assume that 

p2p4 < 1 + p5,  (27) 

then (26) has 3 positive roots µ1, µ2, µ3. Then from 

(23),(29) we can find three fixed point of the problem. 

Thus, there are on the hyperplane 𝜇̇ = 0 in R4 - 

space that is included in R4 -  space, where µ can be 

considered as a parameter. Since the basis in R4 is not a 

family of independent vectors, we can use this 

observation to find conditions when trajectories of the 

dynamical system in R4 are attractive by trajectories in 

R3. If this is true, then the function µ(t) in R4 is a 

constant function in R3. A condition when it is possible 

can be easy found. Indeed, let λ1, λ2, λ3, λ4 be 

eighenvalues of the problem. It means that 

a˙ = λ1a, ṙ = λ2r, ȯ = λ3o, µ̇ = λ4µo. (28) 

From these equations it follows that 

µ̇ = λ4µ = ȯr = (λ2 + λ3)λ. (29) 

It follows that if λ2 + λ3 < 0, then 𝜇̇ ⟶ 0 as 𝑡 ⟶
+∞. It means that 𝜇 can be considered as a parameter 

in asymptotic sence. 

5 Geometric method of determination of 

fixed points of the problem 

Now we assume that there is a component o = o* of 

a fixed point in R3. Then from equation (20) for cortisol 

we see that ṙ ≡ 0 if G(r, o) ≡ 0, where find from (17) the 

(o, r) - nullcline structure that is determined as a curve 

 r := r(o) such that G(r(o), o) ≡ 0 for each admissible o 

from some interval (corresponding numerical 

simulation is in ([8], Fig.4)). To make it, we assume 

that there is a component of fixed 

G(r, o) := −p6o2r3 + (1 + p5)o2r2 − p4p6r + p4p5 = 0, 
    (30) 

where o can be considered as a parameter. Thus, 

there is (multi-valued) curve r := r(o) such that G(r(o), 

o) 0 for each positive fixed o. This curve has been found 

by numerical simulation in ([8], Fig.4)). The curve has 

S form as graphic of a cubic polynomial. 

6 Applications of the singularity theory for 

the HPA problem 

If we find from (30) the curve S = r(o), then on this 

curve ṙ = 0 that follows from the second equation of the 

HPA problem for the function r(t). Results of 

computer experiments can 

be found in [8]. On this curve, which has S - form 

(that leads to bistability), the function r(t) is constant. 

The behaviour of the RG receptor can be analyzed 

by the singulary theory [13]. The graphic r := r(o) is 

multi-valued, and ones form S - form curve as shown, 

for example, in ([10], Fig. 3). From [13] it follows that 

there is irreversibility if  

G = Gr = Grr = 0, Grrr =≠ 0. (31) 
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ƒ 

From equation G(r, o) = 0 it follows that there are 

one or three fixed points for each fixed positive a. From 

equation Grr = 0, i.e., 

−3𝑝6𝑜2𝑟 + (1 + 𝑝5)𝑜2 = 0, 𝐺𝑟𝑟𝑟 ≠ 0 (32) 

it follows that we have here the vertical inflection 

point value 𝑟 =
1+𝑝5

3𝑝6
, which is independent on o as a 

parameter. Ignition and extinction points in the (r − o) 

locus (see, [10]) are determined by the solutions 

G = Gr = 0 with Grr = 0. 

They satisfy to the quadratic equation 

−(1 + 𝑝5)𝑜2𝑟2 + 2𝑝4𝑝5𝑟 − 3𝑝4𝑝5 = 0.(33) 

that leads to the values 

𝑟1,2 =
−𝑝4𝑝5±√(𝑝4𝑝5)2−3(1+𝑝5)𝑝4𝑝5

−(1+𝑝5)
. (34) 

In the cae of bistability, these points separate three 

fixed states (one unstable saddle point is between two 

stable states). From here we see that the inequality 

 (p4p5)2 ≥ 3(1 + p5)p4p5  (35) 

must be satisfied (it is necessary condition) for the 

bistability to exist. 

Notice that according to Descartes' rule of signs 

the number of the positive roots of a polynomial is 

equal to the number of sign changes in the coefficients 

or less than the sign changes by a multiple of 2. Hence 

polynomial (30) has one or three positive roots. These 

roots lie on the curve r(o). Intersection of this curve with 

the line o = a (which follows from (18)) we obtain that 

µ = ar(a). Here, µ = (µ1, µ2, µ3). Using (52,) we find 

fixed points of the problem, which are pk = (ak, ak, rk = 

r(ak)), k = 1, 2, 3. 

Notice also that according interpretation in ([12], 

Fig. 3) it has been obtained the variations of steady 

state for GR and cortisol r, respectively, with a as the 

parameter. There are three intervals I1, I3 and I2. If a ∈ 

I1 ∪ I3, then there are two attractive fixed points. If a ∈ 

I2, we obtain a repelling fixed point. 

7 2D nonlinear dynamics 

Let us consider the system of equations 

o (̇t) = −o(t) + a(t − τ ),  (36) 

𝑎̇(𝑡) = −𝑓[𝑜(𝑡) − 𝑝3𝑎(𝑡)]. (37) 

Then 

𝑎̇(𝑡 − 𝜏) = −𝑓[𝑜(𝑡 − 𝜏) − 𝑝3𝑎(𝑡 − 𝜏)]. (38) 

Define a(t − τ ) = y(t). Then from (60) it follows 

that 

𝑦̇(𝑡 − 𝜏) = −𝑓[𝑜(𝑡 − 𝜏) − 𝑝3𝑦(𝑡)]. (39) 

In (58) we define (for unification with [9])  

o(t) = x(t). Then (58), (61) can be written as 

ẋ(t) = y(t) − x(t),  (40) 

y (̇t − τ ) = −f [o(t − τ )] − p3y(t),  (41) 

y˙(t) = y(t) − x(t).  (42) 

Consequently, the first equation can be written as 

𝑦̇(𝑡) =
𝐴

1+𝑝2𝑜(𝑡)𝑟(𝑜(𝑡))
− 𝑝3𝑦(𝑡). (43) 

Notice that on each plane y (̇t) ≡ 0 the following 

functional relation r(t) ≡ Φ(o(t)) is satisfied, where Φ is 

known irreversible function. Remind that a function Φ 

represents the glucocorticoid receptor (GR) that is 

included in the HPA axis (see, [12], Fig.3(a)) that 

includes the glucocorticoid. The nonlinear effect arises 

when GR homodimerizes (after cortisol activation) and 

induces its own synthesis in the pituitary. The form of 

graphics Φ(o) plays the main role in the qualitative 

study of solutions. The graphic has S form that allows 

to find three fixed points. Two of these fixed points are 

attracting, but one of the points o∗ must be repelling in 

R1.. 

Indeed, below it will be shown that if o∗ is 

attracting, then there in reality four fixed point (see prev 

stable solutions. So that there are no of oscillating 

solutions. If a unique 

fixed point o∗ is repelling then this point plays role 

of separator. Behaviour of a solution depends on an 

amplitude of initial data which is given on interval [−τ, 

0). Let h(t) be an initial function on [−τ, 0). Then if 0 

< h(t) < o∗, a solution tends to a constant solution 

o(t)→ o1 < o3 as t → +∞ . If h(t) > o∗ on interval [−τ, 

0) then o(t) → o1 < o3 as t → +∞. As a result, existence 

both of delay and repelling fixed point leads to the 

possibility of oscillating solutions of the problem if the 

initial data on [−τ, 0) are large enough. 

8 Planar case on RG null-isocline 

Now, we return to the mathematical aspects of the 

problem. As shown above, there is i.e., to the equation 

(43). Define 

−𝑓(𝑡) =
𝐴

1+𝑝2𝑜𝑟(𝑜)
,  (44) 

where r(o) is defined by RG form of the RG curve. 

Then equation (43) can be rewrite as 

𝑦̇(𝑡) = −𝑓(𝑜) − 𝑝3𝑦(𝑡).  (45) 

Next, an important observation is that both 

equations (43) and (60) are equivalent to the system of 

equations 

𝑥̇(𝑡) = 𝑦(𝑡) − 𝑝1𝑥(𝑡),  (46) 

𝑦̇(𝑡) = −𝑓(𝑥(𝑡 − 𝜏)) − 𝑝2𝑦(𝑡). (47) 

where for (46) we put ρ1 = 1, ρ2 = p3, τ = 1. Then 

from [9] it follows that system (46), (50) has a 

monotonic periodic solution with a period grater then 2 

and, respectively, 2τ for the origin physiological 

problem. 

Here, the following conditions must be satisfied: 

(i) a and b are positive constant, 0(ii) u f(u) > 0 for all u 
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≠ 0, (iii) there is a positive constant χ such that f (u) ≥ 

−χ for all u, 

𝑓̇(0) >
(𝑝1+𝑝2)𝛾

sin 𝛾
,  (48) 

where γ satisfies 0 < γ < π, and 

coth 𝛾 =
1

𝛾
(𝛾 − 𝑝1𝑝2)(𝑝1 + 𝑝2). (49) 

Remind that, for the physiological problem, ρ1 = 1 

and ρ2 = p3. Hence, the condition (i) is satisfied. Next, 

the inequality (60) becomes 

𝑓̇(0) >
(1+𝑝3)𝛾

sin 𝛾
,   (50) 

Notice that in [9] there is only a unique fixed point 

0. In our situation, there are three fixed points (o1, o2, 

o3), where o1 and o3 must be attractive fixed points, and 

o2 = o* be a repelling fixed point. So that inequality (62) 

becomes 

𝑓̇(𝑜∗) >
(𝑝1+𝑝2)𝛾

sin 𝛾
,  (51) 

Further, the point o* must be repelling. For 

example, in the limit γ → 0 we obtain f˙(o*) > 1 + p3 

and, hence, the condition of the local unstability is 

satisfied. Since, p3 ≥0, this fixed point must be repelling 

at least for small δ. In conclusion, the condition (iii) is 

the condition of local instability as it will be shown 

below. 

9 Analyses 

Define α = ρ1 + ρ2,β = ρ1ρ2, ν = f˙(0). Then the 

characteristic equation is 

λ2 + αλ + β + νe−λ = 0,  (52) 

where we assume that τ = 1. If τ ≠ 1 then the 

problem is reduced to the characteristic equation: 

 

 
Figure 1: Slow oscillating distributions of cortisol. 

 

𝑧2 + 𝛼𝜏𝑧 + 𝛽𝜏2 + 𝜈𝜏2𝜖−𝑧 = 0, (53) 

where z = λτ , ν→ντ 2, α→ατ , and β→βτ 2, and we 

assume that τ ≠ 0. 

Further, we use results from ([9], Lemma 1). If α, 

β, ν be positive, and if α2≥2β, then the following three 

conditions are equivalent: (1) Equation (52) has at least 

one solution. 

The characteristic equation has precisely one 

solution λ with ℜλ > 0 and ℑ0 <λ < π. 

The following inequality is true 

𝜈 >
𝛼𝜈1

sin 𝜈1
,  (54) 

where 0 < ν1 < π and 

coth 𝜈1 =
1

𝛼
(𝜈1 −

𝛽

𝜈1
),  (55) 

Notice that there are many details about behaviour 

of trajectories of the dynamical system. We formulate 

this behaviour as distributions of concentrations of 

hormones a and o on the (o − a) - plane, where o is the 

distribution of cortisol. For example, there is an 

estimation 

𝑓̇(0) >
𝑝1𝑝2

𝑒𝑚𝑖𝑛(𝑝1,𝑝2)−1
,  (56) 

where 0 → o* and ρ1 = 1, ρ2 = p3, so that 

𝑓̇(𝑜∗) >
𝑝3

𝑒𝑚𝑖𝑛(1,𝑝3)−1
,  (57) 
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Then a component o(t) has properties as follows: 

(1) Zeroes for a graphic o(t) form an infinite series 

 tk, k = 1, 2, ..., with o(tk) = 0, tk+1-tk > 1 and  

o˙(t2k−1) < 0, o˙(t2k) > 0, and o˙(t2k−1) < 0, o˙(t2k) > 0, and 

a(t2k−1) < 0, a(t2k) > 0, and a(t2k−1 + 1) < 0,  

a(t2k + 1) > 0; 

(2) A function eαto(t) is monotonic increasing on 

an interval (t2k, t2k + 1) and monotonic decreasing on 

(t2k−1, t2k−1 + 1), where α = 1 + p3 (see, Fig. 1) 

10 A necessary and sufficient condition for 

existence of slow periodic solutions 

If τ ≠ 1, then we obtain the characteristic equation 

𝑧2 + 𝛼𝜏𝑧 + 𝛽𝜏2 + 𝜈𝜏2𝜖−𝑧 = 0, (58) 

where z = λτ . Define 𝛼̂ = 𝛼𝜏,𝛽̂ = 𝛽𝜏2 and  
𝜈̂ = 𝜈𝜏2. Next, we must verify the assumption 𝛼̂2 > 𝛽̂2 

from ([9], Lemma 1). Evidently that this assumption is 

satisfied for each τ ≠ 0. 

Further, we assume that 

𝜋2 +
𝛼̂2

4
− 𝛽̂2 > 0.  (59) 

From (59) it follows the necessary condition on 

delay 

𝜏 <
2𝜋

√4𝛽−𝛼2
.  (60) 

From (60) we obtain that must be 2β < α2 < 4β that 

leads to the natural condition p3 > 1. 

The condition (59) allows to apply Lemma 1 from 

[9]. It means that characteristic equation (58) has 

precisely one solution z with ℜz > 0 and 0 < ℑ z < π. 

Here, ν̂ must be such that 

𝜈̂ >
𝛼̂𝜈1̂

sin 𝜈1̂
,   (61) 

where 0 < ν̂1 < π, and 

coth 𝜈1̂ =
1

𝛼
(𝜈1̂ −

𝛽

𝜈1̂
),  (62) 

(see, [9], conditions (2),(3) from Lemma 1). From (62) 

it follows that 

𝜈𝜏2 >
𝛼𝜈1𝜏3

sin 𝜈1𝜏2.  (63) 

In the limit τ → 0, from (63) it follows that 

𝜏 >
𝛼

𝜈
+ 𝑂(𝜏2).  (64) 

Remind that ν = f˙(o*), where o* is repelling 

fixed point of f . Together with (62) it gives 

1+𝑝3

𝑓(𝑜∗)
< 𝜏 <

2𝜋

√4𝛽−𝛼2
.  (65) 

Inequality (65) gives necessary and sufficient 

conditions for existence of slow periodic solutions for 

the HPA problem in 2D approximation. 

11 Conclusion 

In this paper, it has been considered physiological 

and mathematical mechanisms of formation of 

ultraradian oscillations in the HPA axis. It is shown 

that here the main role plays the nonlinear connection 

between cortisol COR and the glucocorticoid receptor 

GR that forms a homodimer [3]. A coception of 

transcriptional regulation is that the GR feedback 

control works rather slowly compare to other cellular 

processes. 

The corresponding differential-difference 

equations with delay argument have slow oscillating 

periodic solutions. The delay has been included 

because, for example, mammalian cells one can expect 

at least a delay of the down regulation in the range of 

15 minute up to 2 hours (see,[14, 11]. It is proved that 

at least mathematically) this hypothesis has been 

confirmed as slow oscillating 2τ (or larger) periodic 

distributions of cortisol (Fig.1). Here we follows to a 

mechanistic ODE system model of the glucocorticoid 

feedback mechanisms within the anterior pituitary 

gland cell, adding to this model the delay 𝜏. 

It is shown that important factor is the 

consequence between extracellular events such as 

changes in the CRH and cortisol induced inhibitory 

effect on anterior pituitary gland cells, which already 

occur after a few seconds [4, 1]. As a result, the slow 

oscillating periodic solutions of the mathematical mode 

explains qualitatively a phenomenon that can not be 

explained means of the genomic feedback mechanism 

[11]. An exact interval τ1 < τ < τ2 for existence of slow 

oscillating periodic distributions for cortisol it has been 

found. 
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