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VECTOR-VALUED GENERALIZATION OF CONTINUOUS FRAMES AND THEIR 

NOETHERIAN PERTURBATIONS 

 

Summary. Vector-valued generalization of continuous frames in Banach spaces is considered in this paper. 

The concepts of 𝑐�̃�-frame, 𝑐�̃�-Riesz basis, Banach 𝑐�̃�-frame and 𝑐�̃�-atomic decomposition are introduced. 

Criteria for 𝑐�̃�-frames, 𝑐�̃�-Riesz bases, Banach 𝑐�̃�-frames are found and the relationship between them is 

established. The stability of 𝑐�̃�-frame and related (in some sense) 𝑐�̃�-atomic decompositions, as well as 

Noetherian perturbations of 𝑐�̃�-atomic decompositions are also studied.  

 

1. Introduction 

The concept of frames in Hilbert spaces has been 

introduced by R.J. Duffin and A.C. Schaeffer in 1952 

[1] in the study of non-harmonic Fourier series with 

respect to perturbed exponential systems. In the same 

work, R.J. Duffin and A.C. Schaeffer introduced the 

concept of abstract frame and extended many of their 

results to this concept. The interest to frames has grown 

significantly in the 1980s due to wide applications of 

wavelet methods in various fields of natural science 

(see, e.g., N.M. Astafyeva [2], I.M.Dremin, O.V. 

Ivanov, V.A. Nechitailo [3], etc). For theoretical 

aspects of this theory we refer the readers to Ch. Chui 

[4], Y. Meyer [5], I. Daubechies [6], S. Mallat [7], R. 

Young [8], Ch. Heil [9], O. Christensen [10, 11], etc.  

Frames draw growing interest also from a 

theoretical point of view. As an example, we can 

mention the connection between the theory of frames 

and the well-known problem of Kadison and Singer 

(1959). Modified, but equivalent forms of this problem 

have been studied in different branches of mathematics 

such as theory of frames, theory of operators, time-

frequency analysis, etc. (for more details see [12-14]). 

It should be noted that the advantage of Hilbert frames 

is that every element of a Hilbert space has a frame 

expansion. This expansion may not be unique. A frame 

defines a conjugate frame which generates the frame 

expansion. Moreover, the sequence of coefficients of 

this expansion has the least 𝑙2 norm. Therefore, the 

matter of finding new frames is of special scientific 

interest.  

The methods of perturbation theory for linear 

operators are widely used for establishing the frames. 

O. Christensen [10, 11] thoroughly studied this matter 

in case where the perturbations are caused by the 

compact operators. The case of most general 

perturbations, i.e. the case of perturbations caused by 

Noetherian operators, has been studied by B.T. Bilalov 

and F.A. Guliyeva [15, 16]. The stability of frames in 

Hilbert spaces was investigated in [17, 18]. 

The concept of frames in Banach spaces was first 

treated by K. Gröchenig in [19], where the concepts of 

Banach frame and atomic decomposition were 

introduced. Banach frames, atomic decompositions and 

their stability have also been studied in [20-22], while 

[15] treated their Noetherian perturbations.  

Later, the concept of frame has been generalized 

in many directions, and this tendency is still going on. 

In [23], the concepts of g-frame and g-Riesz basis in 

Hilbert space have been introduced, their basic 

properties and the relationship between them have been 

established. g-frames have also been studied in [24-26]. 

In [16], the concept of 𝑡 -frame in tensor products of 

Hilbert spaces has been introduced. The concept of 𝑝 -

frame (a generalization of a frames in Banach spaces) 

has been introduced and studied in [27] (see also [28, 

29]). In a more general case of Banach space of 

sequences with a canonical basis, 𝑝 -frames have been 

studied in [30]. Another generalization of frames in 

Hilbert spaces is a continuous frame treated in [31] for 

locally compact space with Radon measure. 

Continuous frames have been also studied in [32]. 

Generalizations of the results of [23] to continuous 

frames in Hilbert spaces can be found in [33]. 

In this work, we consider a vector-valued 

generalization of continuous frames in Banach spaces. 

We introduce the concepts of 𝑐�̃�-frame, 𝑐�̃�-Riesz basis 

and 𝑐�̃�-atomic decomposition in Banach spaces. We 

obtain the results concerning 𝑐�̃�-frameness and 𝑐�̃�-

Riesz basicity, and establish the relationship between 

them. We also study the stability of 𝑐�̃�-frame and 

Noetherian perturbations of 𝑐�̃�-atomic decomposition.  

2. Needful Information 

In this section, we give some notations and 

auxiliary facts.  

Throughout this work, 𝑋 and 𝑍 will denote the 

Banach spaces with the norms ‖⋅‖𝑋 and ‖⋅‖𝑍, 

respectively. 𝑋∗ will be the space conjugate to 𝑋, and 

the value of the functional 𝑥∗ ∈ 𝑋∗ at 𝑥 ∈ 𝑋 will be 

denoted by (𝑥, 𝑥∗). The mapping 𝜋𝑋: 𝑋 → 𝑋∗∗ defined 

by the formula (𝑥∗, 𝜋(𝑥)) = (𝑥, 𝑥∗) is called a 

canonical mapping. For reflexive space 𝑋, canonical 

mapping 𝜋𝑋: 𝑋 → 𝑋∗∗ is an isometric isomorphism. By 

𝐿(𝑋, 𝑍) we denote the Banach space of linear bounded 

operators 𝑇: 𝑋 → 𝑍. The kernel and the image of the 

operator 𝑇 ∈ 𝐿(𝑋, 𝑍) are denoted by 𝑘𝑒𝑟 𝑇 and 𝐼𝑚 𝑇, 

respectively. The conjugate of the operator 𝑇 is denoted 

by 𝑇∗. 𝑇∗ ∈ 𝐿(𝑍∗, 𝑋∗) and ‖𝑇∗‖ = ‖𝑇‖. The operator 
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𝑇 ∈ 𝐿(𝑋, 𝑍) is said to be Noetherian if 𝑘𝑒𝑟 𝑇, 𝑘𝑒𝑟 𝑇∗ 

are finite dimensional and 𝐼𝑚 𝑇 is closed.  

We will need the following well-known facts.  

Theorem 2.1 ([34]). Let 𝑇 ∈ 𝐿(𝑋, 𝑍). Then the 

conjugate operator 𝑇∗ is surjective only when 𝑇 has a 

bounded inverse in 𝐼𝑚 𝑇. 

 

Theorem 2.2 ([10]). Let 𝑇:𝑋 → 𝑋 be a linear operator. Assume there exist the numbers 𝜆1, 𝜆2 ∈ [0,1) such 

that ‖𝑥 − 𝑇𝑥‖𝑋 ≤ 𝜆1‖𝑥‖𝑋 + 𝜆2‖𝑇𝑥‖𝑋 for every 𝑥 ∈ 𝑋. Then the operator 𝑇 is bounded and boundedly invertible 

in 𝑋 and 
1−𝜆2

1+𝜆1
‖𝑥‖𝑋 ≤ ‖𝑇−1𝑥‖𝑋 ≤

1+𝜆2

1−𝜆1
‖𝑥‖𝑋. 

Let 𝛺 be some set, �̃� and 𝑍 be Banach spaces of vector-valued mappings �̃� = 𝑥(⋅), 𝑥(𝜔): 𝛺 → 𝑋 and  

�̃� = 𝑧(⋅), 𝑧(𝜔):𝛺 → 𝑍, respectively. We say that the space �̃� is normally subordinate to the space 𝑍 if, for 

𝑥(𝜔): 𝛺 → 𝑋 and 𝑧(⋅) ∈ 𝑍, it follows from ‖𝑥(𝜔)‖𝑋 ≤ ‖𝑧(𝜔)‖𝑍, ∀𝜔 ∈ 𝛺, that �̃� = 𝑥(⋅) ∈ �̃� and  

‖𝑥(⋅)‖�̃� ≤ ‖𝑧(⋅)‖�̃�. 

The concept below is a generalization of a continuous frame in a Banach space.  

Definition 2.1. The mapping 𝐹:𝛺 → 𝐿(𝑍, 𝑋) is called a 𝑐�̃�-frame in 𝑍 with respect to 𝛺 if 𝐹(⋅)𝑧 ∈ �̃�,  

∀𝑧 ∈ 𝑍 and ∃𝐴, 𝐵 > 0 such that  

 𝐴‖𝑧‖𝑍 ≤ ‖𝐹(⋅)𝑧‖�̃� ≤ 𝐵‖𝑧‖𝑍, ∀𝑧 ∈ 𝑍.    (2.1) 

 

The constants 𝐴 and 𝐵 are called the lower and 

upper bounds of 𝑐�̃�-frame, respectively. In case where 

the right-hand side inequality in (2.1) is true,  

𝐹: 𝛺 → 𝐿(𝑍, 𝑋) is said to be 𝑐�̃�-Besselian in 𝑍 with 

respect to 𝛺 with the bound 𝐵. Next, 𝑐�̃�-frame in 𝑍 

with respect to 𝛺 will be called simply 𝑐�̃�-frame in 𝑍. 

If there exists an operator 𝑆 ∈ 𝐿(�̃�, 𝑍) such that  

𝑆(𝐹(⋅)𝑧) = 𝑧, ∀𝑧 ∈ 𝑍, then the pair (𝐹, 𝑆) will be 

called a Banach 𝑐�̃�-frame in 𝑍 with the bounds 𝐴 and 

𝐵, and the operator 𝑆 will be called a 𝑐�̃�-frame operator 

of the mapping 𝐹. 

Example 2.1. Let 𝑿 be a Banach space, (𝛺, 𝜇) be 

a measurable space, 𝑍 = 𝑙2 and �̃� = 𝐿𝑝(𝛺, 𝜇, 𝑋),  

1 < 𝑝 < +∞. Assume that 𝛼𝑛: 𝛺 → 𝑋 is such that 

∃𝐴(𝜔), 𝐵(𝜔) ∈ 𝐿𝑝(𝛺, 𝜇): ∀𝜔 ∈ 𝛺 

 

 𝐴(𝜔)‖{𝑐𝑛}‖𝑙2 ≤ ‖∑ 𝑐𝑛𝛼𝑛(𝜔)𝑛 ‖𝑋 ≤ 𝐵(𝜔)‖{𝑐𝑛}‖𝑙2 , ∀{𝑐𝑛} ∈ 𝑙2.   (2.2) 

 

Let the mapping 𝐹:𝛺 → 𝐿(𝑙2, 𝑋) be defined by the 

formula 𝐹(𝜔){𝑐𝑛}𝑛∈𝑁 = ∑ 𝑐𝑛𝛼𝑛
∞
𝑛=1 (𝜔). Then 𝐹 is a 

𝑐𝐿𝑝(𝛺, 𝜇, 𝑋) -frame in 𝑙2. 

In fact, ∀{𝑐𝑛}𝑛∈𝑁 ∈ 𝑙2 we have  

 

‖𝐹(⋅){𝑐𝑛}𝑛∈𝑁‖𝐿𝑝(𝛺,𝜇,𝑋)
𝑝

= ∫ ‖∑ 𝑐𝑛𝛼𝑛
∞
𝑛=1 (𝜔)‖𝑝

𝛺
𝑑𝜇. 

Using (2.2), we obtain 

 
‖𝐴(⋅)‖𝐿𝑝(𝛺,𝜇)‖{𝑐𝑛}𝑛∈𝑁‖𝑙2 ≤ ‖𝐹(⋅)({𝑐𝑛}𝑛∈𝑁)‖𝐿𝑝(𝛺,𝜇,𝑋) ≤ ‖𝐵(⋅)‖𝐿𝑝(𝛺,𝜇)‖{𝑐𝑛}𝑛∈𝑁‖𝑙2. 

 

Example 2.2. Let 𝒁 be a Banach space, 𝑋 = 𝑙𝑝, 1 < 𝑝 < +∞, (𝛺, 𝜇) be a measurable space, �̃� = 𝑙𝑝(𝛺, 𝜇) 

be a Banach space of sequences {𝑎𝑛(𝜔)}𝑛∈𝑁, 𝜔 ∈ 𝛺, of measurable functions in 𝛺 equipped with the norm 

‖{𝑎𝑛}𝑛∈𝑁‖𝑙𝑝(𝛺,𝜇) = (∑ ∫ |𝑎𝑛(𝜔)|𝑝𝑑𝜇
𝛺

∞
𝑛=1 )

1

𝑝. Assume that 𝛼𝑛: 𝛺 → 𝑍∗ is such that ∀𝜔 ∈ 𝛺 {𝛼𝑛(𝜔)}𝑛∈𝑁 is a 𝑝 -

frame in 𝑍 (see [27]) with the bounds 𝐴(𝜔), 𝐵(𝜔) ∈ 𝐿𝑝(𝛺, 𝜇), i.e. ∀𝜔 ∈ 𝛺 

 

 𝐴(𝜔)‖𝑧‖𝑍 ≤ (∑ |(𝑧, 𝛼𝑛(𝜔))|𝑝∞
𝑛=1 )

1

𝑝 ≤ 𝐵(𝜔)‖𝑧‖𝑍,∀𝑧 ∈ 𝑍.   (2.3) 

 

Define the mapping 𝐹: 𝛺 → 𝐿(𝑍, 𝑙𝑝) by the formula 𝐹(𝜔)𝑧 = {(𝑧, 𝛼𝑛(𝜔))}𝑛∈𝑁, 𝜔 ∈ 𝛺. From (2.3) we have  

 

‖𝐹(𝜔)𝑧‖𝑙𝑝
= (∑ |(𝑧, 𝛼𝑛(𝜔))|𝑝∞

𝑛=1 )
1

𝑝 ≤ 𝐵(𝜔)‖𝑧‖𝑍, 𝜔 ∈ 𝛺, 𝑧 ∈ 𝑍. 

 

The mapping 𝐹 is a 𝑐𝑙𝑝(𝛺, 𝜇) -frame in 𝑍 with the bounds ‖𝐴‖𝐿𝑝(𝛺,𝜇) and ‖𝐵‖𝐿𝑝(𝛺,𝜇). In fact, as ∀𝑧 ∈ 𝑍  

‖𝐹(⋅)𝑧‖𝑙𝑝(𝛺,𝜇)
𝑝

= (∑ ∫ |(𝑧, 𝛼𝑛(𝜔))|𝑝𝑑𝜇
𝛺

∞
𝑛=1 )

1

𝑝, 

taking into account (2.3) we obtain 

 
‖𝐴(⋅)‖𝐿𝑝(𝛺,𝜇)‖𝑧‖𝑍 ≤ ‖𝐹(⋅)𝑧‖𝑙𝑝(𝛺,𝜇) ≤ ‖𝐵(⋅)‖𝐿𝑝(𝛺,𝜇)‖𝑧‖𝑍. 

 

Remark 2.1. If the mapping 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) is a 

𝑐�̃�-frame in 𝑍, then the operator 𝑈 ∈ 𝐿(𝑍, �̃�) defined 

by the formula  
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 𝑈(𝑧) = 𝐹(⋅)𝑧, 𝑧 ∈ 𝑍,      (2.3) 

 

is boundedly invertible in 𝐼𝑚 𝑈. Therefore, if the 

mapping 𝐹:𝛺 → 𝐿(𝑍, 𝑋) is a 𝑐�̃�-frame in 𝑍, then 𝑍 is 

isomorphic to some subspace of �̃�. 

The following concept generalizes the one of 

atomic decomposition in Banach spaces.  

Definition 2.2. Let 𝐹:𝛺 → 𝐿(𝑍, 𝑋) and  

𝛬: 𝛺 → 𝐿(𝑋, 𝑍). The pair (𝐹, 𝛬) is called a 𝑐�̃�-atomic 

decomposition in 𝑍 with respect to 𝛺 if  

1) ∀𝑧 ∈ 𝑍 , ∀𝑓 ∈ 𝑍∗ 𝐹(⋅)𝑧 ∈ �̃�; 

2) ∃𝐴, 𝐵 > 0 such that  

𝐴‖𝑧‖𝑍 ≤ ‖𝐹(⋅)𝑧‖�̃� ≤ 𝐵‖𝑧‖𝑍, ∀𝑧 ∈ 𝑍; 

3) ∀𝑧 ∈ 𝑍 (𝑧, 𝑓) = (𝐹(⋅)𝑧, 𝑓𝛬(⋅)), ∀𝑧 ∈ 𝑍,  

∀𝑓 ∈ 𝑍∗.  

The constants 𝐴 and 𝐵 are called the lower and 

upper bounds of 𝑐�̃�-atomic decomposition (𝐹, 𝛬), 

respectively.  

3. 𝒄�̃�-Frames In Banach Spaces 

In this section, we give criteria for 𝑐�̃�-frameness 

and 𝑐�̃�-Riesz basicity of a mapping, and establish the 

relationship between them. 

The theorem below presents a characterization of 

𝑐�̃�-Besselian mappings.  

Theorem 3.1. Let the mapping 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) be 

such that 𝐹(⋅)𝑧 ∈ �̃�, ∀𝑧 ∈ 𝑍. Then 𝐹 is 𝑐�̃�-Besselian 

in 𝑍 with a bound 𝐵 only when there exists an operator 

𝑇: �̃�∗ → 𝑍∗ defined by the formula  

 

 (𝑧, 𝑇�̃�∗) = (𝐹(⋅)𝑧, �̃�∗), �̃�∗ ∈ �̃�∗, 𝑧 ∈ 𝑍,     (3.1) 

 

and ‖𝑇‖ ≤ 𝐵. 

Proof. Let the mapping 𝐹 be 𝑐�̃�-Besselian in 𝑍 

with a bound 𝐵. Then there exists a bounded operator 

𝑈: 𝑍 → �̃� defined by the formula (2.3). Let’s find its 

conjugate 𝑈∗. For ∀�̃�∗ ∈ �̃�∗ and ∀𝑧 ∈ 𝑍 we have  

 

 (𝑧, 𝑈∗�̃�∗) = (𝑈𝑧, �̃�∗) = (𝐹(⋅)𝑧, �̃�∗).     (3.2) 

 

Consequently, 𝑇 = 𝑈∗ and ‖𝑇‖ = ‖𝑈‖ ≤ 𝐵. 

Conversely, let there exist a bounded operator 

𝑇: �̃�∗ → 𝑍∗ defined by the formula (3.1) and  

‖𝑇‖ ≤ 𝐵. We have  

 
‖𝐹(⋅)𝑧‖�̃� = 𝑠𝑢𝑝

‖�̃�∗‖=1
|(𝐹(⋅)𝑧, �̃�∗)| = 𝑠𝑢𝑝

‖�̃�∗‖=1
|(𝑧, 𝑇�̃�∗)| ≤ ‖𝑇‖‖𝑧‖𝑍 ≤ 𝐵‖𝑧‖𝑍, 

 

i.e. the mapping 𝐹 is 𝑐�̃�-Besselian in 𝑍 with a bound 

𝐵. Theorem is proved. 

The theorem below presents a criterion for 𝑐�̃�-

frameness of a mapping.  

Theorem 3.2. Let the mapping 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) be 

such that 𝐹(⋅)𝑧 ∈ �̃�, ∀𝑧 ∈ 𝑍. Then 𝐹 is a 𝑐�̃�-frame in 

𝑍 with a bound 𝐵 only when there exists a bounded 

operator 𝑇: �̃�∗ → 𝑍∗ defined by the formula (3.1) and 

𝐼𝑚 𝑇 = 𝑍∗. 

Proof. Let 𝐹 be a 𝑐�̃�-frame in 𝑍 and the operator 

𝑈 be defined by the formula (2.3). Then 𝑈 is boundedly 

invertible in 𝐼𝑚 𝑈, and therefore, by Theorem 2.1, the 

operator 𝑈∗ maps �̃�∗ into 𝑍∗. By Theorem 3.1, the 

operator 𝑇 is bounded and from (3.2) we have 

𝑇 = 𝑈∗. Therefore, 𝐼𝑚 𝑇 = 𝑍∗.  

Conversely, let the operator 𝑇 defined by the 

formula (3.1) be bounded and 𝐼𝑚 𝑇 = 𝑍∗. By Theorem 

3.1, the mapping 𝐹 is 𝑐�̃�-Besselian in 𝑍. As 𝑇 = 𝑈∗, 

we have 𝐼𝑚 𝑈∗ = 𝑍∗. Consequently, by Theorem 2.1, 

the operator 𝑈 is boundedly invertible in 𝐼𝑚 𝑈, i.e. 𝐹 is 

a 𝑐�̃�-frame in 𝑍. 

The concept below is a generalization of a Riesz 

basis.  

Definition 3.1. A mapping 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) is 

called a 𝑐�̃�∗-Riesz basis for 𝑍∗ with respect to 𝛺 if  

1) 𝐹(⋅)𝑧 = 0 implies 𝑧 = 0; 

2) there exists the operator 𝑇: �̃�∗ → 𝑍∗ defined 

by the formula (3.1) and ∃𝐴, 𝐵 > 0 such that  

 

 𝐴‖�̃�∗‖�̃�∗ ≤ ‖𝑇�̃�∗‖𝑍∗ ≤ 𝐵‖�̃�∗‖�̃�∗, ∀�̃�∗ ∈ �̃�∗.     (3.3) 

 

The constants 𝐴 and 𝐵 are called the bounds of 

𝑐�̃�∗-Riesz basis.  

Let’s establish the relationship between a 𝑐�̃�∗-

Riesz basis and a 𝑐�̃�-frame in 𝑍. 

Theorem 3.3. Let 𝑍 be a reflexive Banach space 

and the mapping 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) be a 𝑐�̃�∗-Riesz basis 

for 𝑍∗ with the bounds 𝐴 and 𝐵. Then 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) 

is a 𝑐�̃�-frame in 𝑍 with the bounds 𝐴 and 𝐵. 

Proof. Let 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) be a 𝑐�̃�∗-Riesz basis 

for 𝑍∗ with the bounds 𝐴 and 𝐵. It follows from the 

inequality (3.3) that the bounded operator 𝑇 is injective 

and 𝐼𝑚 𝑇 is closed. In fact, if 𝑇�̃�∗ = 0, then from the 

inequality on the left-hand side of (3.3) we obtain 

 
‖�̃�∗‖�̃�∗ = 0, i.e. �̃�∗ = 0. Let 𝑓𝑛 = 𝑇�̃�𝑛

∗  и 𝑓 = 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛.  

Then 

𝐴‖�̃�𝑛
∗ − �̃�𝑚

∗ ‖�̃�∗ ≤ ‖𝑓𝑛 − 𝑓𝑚‖𝑍∗ → 0 
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as 𝑛,𝑚 → ∞. Therefore, in view of the completeness of 

�̃�∗, there exists �̃�∗ = 𝑙𝑖𝑚
𝑛→∞

�̃�𝑛
∗ . By virtue of the continuity 

of the operator 𝑇, we have 𝑇�̃�∗ = 𝑙𝑖𝑚
𝑛→∞

𝑇�̃�𝑛
∗ = 𝑓. Let’s 

show that 𝐼𝑚 𝑇 = 𝑍∗. Assume the contrary, i.e. assume 

𝐼𝑚 𝑇 ≠ 𝑍∗. The reflexivity of 𝑍 implies the existence 

of 𝑧 ∈ 𝑍, 𝑧 ≠ 0 such that (𝑧, 𝑇�̃�∗) = 0 for ∀�̃�∗ ∈ �̃�∗. 

Consequently,  

(𝐹(⋅)𝑧, �̃�∗) = 0. Hence, 𝐹(⋅)𝑧 = 0 and 𝑧 = 0. This 

contradicts the condition 𝑧 ≠ 0, therefore 𝐼𝑚 𝑇 = 𝑍∗. 

Thus, the operator 𝑇 is boundedly invertible. It is clear 

that ‖𝑇‖ and ‖𝑇−1‖−1 are the bounds of the 𝑐�̃�∗-Riesz 

basis 𝐹. As 𝑈∗ = 𝑇, the operator 𝑈 is boundedly 

invertible, and, consequently, 𝐹 is a 𝑐�̃�-frame in 𝑍 with 

the bounds  

 
‖𝑈‖ = ‖𝑇∗‖ = ‖𝑇‖, ‖𝑈−1‖−1 = ‖(𝑇∗)−1‖−1 = ‖𝑇−1‖−1. 

 

Theorem is proved. 

Now we consider the conditions under which a 

𝑐�̃�-frame becomes a 𝑐�̃�∗-Riesz basis. The following 

theorem is true. 

Theorem 3.4. Let �̃� be a reflexive space, the 

mapping 𝐹:𝛺 → 𝐿(𝑍, 𝑋) be a 𝑐�̃�-frame in 𝑍 and the 

operator 𝑈 be defined by the formula (2.3). The 

following properties are equivalent: 

1) 𝐹 is a 𝑐�̃�∗-Riesz basis for 𝑍∗; 

2) the operator 𝑇 defined by (3.1) is injective; 

3) 𝐼𝑚 𝑈 = �̃�. 

Proof. 1) ⇒ 2) is obvious.  

Prove that 2) ⇒ 3). Let the operator 𝑇 be 

injective. By Theorem 3.2, the operator 𝑇 is surjective. 

Then it is boundedly invertible. Using Remark 2.1, 

from the reflexivity of the space �̃� we obtain the 

reflexivity of the space 𝑍. Let’s show the validity of the 

relation 𝑈 = 𝜋�̃�
−1𝑇∗𝜋𝑍. In fact, ∀�̃�∗ ∈ �̃�∗ and ∀𝑧 ∈ 𝑍 

we have 

 

(𝑈𝑧, �̃�∗) = (𝑧, 𝑇�̃�∗) = (𝑇�̃�∗, 𝜋𝑍(𝑧)) = (�̃�∗, 𝑇∗𝜋𝑍(𝑧)). 

 

On the other hand, we have  

(𝑈𝑧, �̃�∗) = (�̃�∗, 𝜋�̃�(𝑈𝑧)). Therefore, 𝜋�̃�𝑈 = 𝑇∗𝜋𝑍, i.e. 

𝑈 = 𝜋�̃�
−1𝑇∗𝜋𝑍. Hence we conclude that the operator 𝑈 

is also boundedly invertible. Consequently, 𝐼𝑚 𝑈 = �̃�.  

Prove that 3) ⇒ 1). By condition 3), the operator 

𝑈 is boundedly invertible. Consequently, 𝑈∗ = 𝑇 

implies that the operator 𝑇 is boundedly invertible. 

Therefore, 𝐹 is a 𝑐�̃�∗-Riesz basis for 𝑍∗. Theorem is 

proved. 

Theorem 3.5. Let the mapping 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) be 

a 𝑐�̃�-frame in 𝑍 and the operator 𝑈 be defined by the 

formula (1.3). The following properties are equivalent: 

1) 𝐼𝑚 𝑈 is complementable in �̃�; 

2) there exists 𝑆 ∈ 𝐿(�̃�, 𝑍) such that (𝐹, 𝑆) is a 

Banach 𝑐�̃�-frame in 𝑍; 

3) there exists 𝐺 ∈ 𝐿(𝑍∗, �̃�∗) such that  

(𝑧, 𝑓) = (𝐹(⋅)𝑧, 𝐺𝑓) ∀𝑓 ∈ 𝑍∗, ∀𝑧 ∈ 𝑍. 

Proof. 1) ⇔ 2). Let 𝐼𝑚 𝑈 be complementable in 

�̃�. Then there exists a projector 𝑃: �̃� → 𝐼𝑚 𝑈. As the 

mapping 𝐹:𝛺 → 𝐿(𝑍, 𝑋) forms a 𝑐�̃�-frame in 𝑍, the 

operator 𝑈 has a bounded inverse 𝑈−1 in 𝐼𝑚 𝑈. Let 𝐷 

be an arbitrary bounded continuation of 𝑈−1 by 𝐼𝑚 𝑈 

to the whole of �̃�. Consider the operator 𝑆 = 𝐷𝑃. It is 

clear that 𝑆 ∈ 𝐿(�̃�, 𝑍) and 𝑆𝑈 = 𝐼, i.e. (𝐹, 𝑆) is a 

Banach 𝑐�̃�-frame in 𝑍. 

Now let (𝐹, 𝑆) be a Banach 𝑐�̃�-frame in 𝑍. 

Consider the operator 𝑃 = 𝑈𝑆. Then, in view of  

𝑆𝑈 = 𝐼, we have 𝑃2 = 𝑈𝑆𝑈𝑆 = 𝑈𝑆 = 𝑃, and, 

consequently, 𝑃 is a projector in �̃�. Let’s show that 

𝐼𝑚 𝑃 = 𝐼𝑚 𝑈. It is clear that 𝐼𝑚 𝑃 ⊂ 𝐼𝑚 𝑈. Let  

�̃� ∈ 𝐼𝑚 𝑈 and 𝑈𝑧 = �̃�. Then 𝑧 = 𝑆�̃�, and, 

consequently, 𝑈𝑧 = 𝑈𝑆�̃� = 𝑃�̃�, i.e. 𝐼𝑚 𝑃 = 𝐼𝑚 𝑈. 

Thus, 𝑃 is a projector from �̃� to 𝐼𝑚 𝑈. Hence, 𝐼𝑚 𝑈 is 

a complementable subspace in �̃�. 

2) ⇔ 3). Define the operator 𝐺 as follows  

𝐺 = 𝑆∗. For ∀𝑧 ∈ 𝑍 and ∀𝑓 ∈ 𝑍∗ we have  

(𝑧, 𝑓) = (𝑆𝐹(⋅)𝑧, 𝑓) = (𝐹(⋅)𝑧, 𝑆∗𝑓) = (𝐹(⋅)𝑧, 𝐺𝑓). 

Conversely, define the operator 𝑆: �̃� → 𝑍 by the 

formula (𝑆�̃�, 𝑓) = (�̃�, 𝐺𝑓) for ∀�̃� ∈ �̃� and ∀𝑓 ∈ 𝑍∗. 

Then |(𝑆�̃�, 𝑓)| ≤ ‖�̃�‖�̃�‖𝐺‖‖𝑓‖. Hence ‖𝑆‖ ≤ ‖𝐺‖. In 

what follows 

(𝑆𝐹(⋅)𝑧, 𝑓) = (𝐹(⋅)𝑧, 𝐺𝑓) = (𝑧, 𝑓). 

Consequently, 𝑆(𝐹(⋅)𝑧) = 𝑧, ∀𝑧 ∈ 𝑍. Theorem is 

proved. 

4. Stability And Noetherian Perturbations Of 

𝒄�̃�-Frames 

In this section, we consider the stability of 𝑐�̃�-

frames and 𝑐�̃�-atomic decompositions as well as their 

Noetherian perturbations. 

The theorem below concerns the stability of 𝑐�̃�-

frames in Banach spaces. 

Theorem 4.1. Let 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) be a 𝑐�̃�-frame 

in 𝑍 with the bounds 𝐴 and 𝐵. Assume that the mapping 

𝐺: 𝛺 → 𝐿(𝑍, 𝑋) is such that 𝐺(⋅)𝑧 ∈ �̃�, there exist the 

numbers 𝜆, 𝛽, 𝜇 ≥ 0 such that the following conditions 

hold: 

 

1)𝑚𝑎𝑥 {𝜆 +
𝜇

𝐴
, 𝛽} < 1; 

2) ‖𝐹(⋅)𝑧 − 𝐺(⋅)𝑧‖�̃� ≤ 𝜆‖𝐹(⋅)𝑧‖�̃� + 𝛽‖𝐺(⋅)𝑧‖�̃� + 𝜇‖𝑧‖𝑍. 

 

Then 𝐺 is a 𝑐�̃�-frame in 𝑍 with the bounds 
𝐴(1−𝜆)−𝜇

1+𝛽
 and 

𝐵(1+𝜆)+𝜇

1−𝛽
. 
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Proof. By condition 2), ∀𝑧 ∈ 𝑍 we have 

 
‖𝐺(⋅)𝑧‖�̃� ≤ ‖𝐹(⋅)𝑧‖�̃� + ‖𝐹(⋅)𝑧 − 𝐺(⋅)𝑧‖�̃� ≤ (1 + 𝜆)‖𝐹(⋅)𝑧‖�̃� + 𝛽‖𝐺(⋅)𝑧‖�̃� + 𝜇‖𝑧‖𝑍. 

 

Hence, 

(1 − 𝛽)‖𝐺(⋅)𝑧‖�̃� ≤ (1 + 𝜆)‖𝐹(⋅)𝑧‖�̃� + 𝜇‖𝑧‖𝑍, 

or 

‖𝐺(⋅)𝑧‖�̃� ≤
1+𝜆

1−𝛽
‖𝐹(⋅)𝑧‖�̃� +

𝜇

1−𝛽
‖𝑧‖𝑍. 

Then, using (2.1), we have 

‖𝐺(⋅)𝑧‖�̃� ≤
𝐵(1+𝜆)+𝜇

1−𝛽
‖𝑧‖𝑍. 

We need to establish a left-hand side 𝑐�̃�-frame inequality for the mapping 𝐺. We have  

 
‖𝐺(⋅)𝑧‖�̃� ≥ ‖𝐹(⋅)𝑧‖�̃� − ‖𝐹(⋅)𝑧 − 𝐺(⋅)𝑧‖�̃� ≥ (1 − 𝜆)‖𝐹(⋅)𝑧‖�̃� − 𝛽‖𝐺(⋅)𝑧‖�̃� − 𝜇‖𝑧‖𝑍, 

or 

(1 + 𝛽)‖𝐺(⋅)𝑧‖�̃� ≥ (1 − 𝜆)‖𝐹(⋅)𝑧‖�̃� − 𝜇‖𝑧‖𝑍. 

Consequently,  

‖𝐺(⋅)𝑧‖�̃� ≥
1−𝜆

1+𝛽
‖𝐹(⋅)𝑧‖�̃� −

𝜇

1+𝛽
‖𝑧‖𝑍 ≥

𝐴(1−𝜆)−𝜇

1+𝛽
‖𝑧‖𝑍. 

 

Thus, 𝐺 is a 𝑐�̃�-frame in 𝑍. Theorem is proved.  

The next theorem concerns the stability of a 

Banach 𝑐�̃�-frame.  

Theorem 4.2. Let (𝐹, 𝑆) be a Banach 𝑐�̃�-frame in 

𝑍, the mapping 𝐺: 𝛺 → 𝐿(𝑍, 𝑋) be such that 𝐺(⋅)𝑧 ∈ �̃� 

and the operators 𝑈, 𝑉: 𝑍 → �̃� be defined by the 

equalities 𝑈(𝑧) = 𝐹(⋅)𝑧, 𝑉(𝑧) = 𝐺(⋅)𝑧, respectively. 

Assume that there exist the numbers 𝜆, 𝛽 ∈ [0; 1), 

𝜇 ≥ 0 such that the following conditions hold: 

 

1) 𝜆‖𝑈𝑆‖ + 𝛽‖𝑉𝑆‖ + 𝜇‖𝑆‖ < 1; 

2) ‖𝐹(⋅)𝑧 − 𝐺(⋅)𝑧‖�̃� ≤ 𝜆‖𝐹(⋅)𝑧‖�̃� + 𝛽‖𝐺(⋅)𝑧‖�̃� + 𝜇‖𝑧‖𝑍. 

 

Then there exists 𝑆1 ∈ 𝐿(�̃�, 𝑍) such that (𝐺, 𝑆1) 

forms a Banach 𝑐�̃�-frame in 𝑍. 

Proof. It is clear that the mapping 𝐹 is a 𝑐�̃�-frame 

in 𝑍 with the bounds ‖𝑆‖−1 and ‖𝑈‖, because 

‖𝑆‖−1‖𝑧‖𝑍 = ‖𝑆‖−1‖𝑆𝑈𝑧‖𝑍 ≤ ‖𝑈𝑧‖�̃� ≤ ‖𝑈‖‖𝑧‖𝑍. 

As 𝑃 = 𝑈𝑆 is a projector, we have ‖𝑈𝑆‖ ≥ 1. Then 

𝜆 + 𝜇‖𝑆‖ ≤ 𝜆‖𝑈𝑆‖ + 𝛽‖𝑉𝑆‖ + 𝜇‖𝑆‖ < 1, and, by 

Theorem 4.1, the mapping 𝐺: 𝛺 → 𝐿(𝑍, 𝑋) is a 𝑐�̃�-

frame in 𝑍 with the bounds  

 
‖𝑆‖−1(1−𝜆)−𝜇

1+𝛽
 and 

(1+𝜆)‖𝑈‖+𝜇

1−𝛽
. 

 

Next, ∀�̃� ∈ �̃� from condition 2) we obtain  

 
‖(𝑈 − 𝑉)𝑆�̃�‖�̃� ≤ 𝜆‖𝑈𝑆�̃�‖�̃� + 𝛽‖𝑉𝑆�̃�‖�̃� + 𝜇‖𝑆�̃�‖𝑍 ≤ (𝜆‖𝑈𝑆‖ + 𝛽‖𝑉𝑆‖ + 𝜇‖𝑆‖)‖�̃�‖�̃�. 

 

Hence, in view of 𝜆‖𝑈𝑆‖ + 𝛽‖𝑉𝑆‖ + 𝜇‖𝑆‖ < 1, we have ‖(𝑈 − 𝑉)𝑆‖ < 1. Consequently, the operator  

𝐼 − (𝑈 − 𝑉)𝑆 is boundedly invertible. Let 𝑆1 = 𝑆(𝐼 − (𝑈 − 𝑉)𝑆)−1. It is clear that 𝑆1 ∈ 𝐿(�̃�, 𝑍). Next, 𝑆1𝑉 = 𝐼. 

In fact, as 

𝑉 = 𝑉𝑆𝑈 = 𝑈 − (𝑈 − 𝑉)𝑆𝑈 = (𝐼 − (𝑈 − 𝑉)𝑆)𝑈, 

we have 

𝑆1𝑉 = 𝑆(𝐼 − (𝑈 − 𝑉)𝑆)−1𝑉 = 𝑆(𝐼 − (𝑈 − 𝑉)𝑆)−1(𝐼 − (𝑈 − 𝑉)𝑆)𝑈 = 𝑆𝑈 = 𝐼. 

 

Thus, (𝐺, 𝑆1) is a Banach 𝑐�̃�-frame in 𝑍. Theorem 

is proved. 

Let’s state another theorem on the stability of a 

Banach 𝑐�̃�-frame. 

Theorem 4.3. Let (𝐹, 𝑆) be a Banach 𝑐�̃�-frame in 

𝑍, the mapping 𝐺: 𝛺 → 𝐿(𝑍, 𝑋) be such that 𝐺(⋅)𝑧 ∈ �̃� 

and the operators 𝑈, 𝑉: 𝑍 → �̃� be defined by the 

equalities 𝑈(𝑧) = 𝐹(⋅)𝑧, 𝑉(𝑧) = 𝐺(⋅)𝑧, respectively. 

Assume that there exist the numbers 𝜆, 𝛽 ∈ [0; 1), 

𝜇 ≥ 0 that satisfy the following conditions: 

 

1) 𝜆‖𝑈𝑆‖ + 𝛽‖𝐼 − 𝑈𝑆‖ + 𝜇‖𝑆‖ < 1; 

2) ‖𝐹(⋅)𝑧 − 𝐺(⋅)𝑧‖�̃� ≤ 𝜆‖𝐹(⋅)𝑧‖�̃� + 𝛽‖𝐺(⋅)𝑧‖�̃� + 𝜇‖𝑧‖𝑍. 

 

Then there exists 𝑆1 ∈ 𝐿(�̃�, 𝑍) such that (𝐺, 𝑆1) 

forms a Banach 𝑐�̃�-frame in 𝑍. 

Proof. As in the proof of Theorem 4.2, it follows 

from condition 2) that the mapping 𝐺 is a 𝑐�̃�-frame in 
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𝑍. Consider the operator 𝐼 − (𝑈 − 𝑉)𝑆. By condition 

2), ∀�̃� ∈ �̃� we have  

 
‖(𝑈 − 𝑉)𝑆�̃�‖�̃� ≤ 𝜆‖𝑈𝑆�̃�‖�̃� + 𝛽‖𝑉𝑆�̃�‖�̃� + 𝜇‖𝑆�̃�‖𝑍 ≤ 

≤ (𝜆‖𝑈𝑆‖ + 𝛽‖𝐼 − 𝑈𝑆‖ + 𝜇‖𝑆‖)‖�̃�‖�̃� + 𝛽‖(𝐼 − (𝑈 − 𝑉)𝑆)�̃�‖�̃�. 

 

Hence, according to Theorem 2.2, the operator  

𝐼 − (𝑈 − 𝑉)𝑆 is boundedly invertible, and  

𝑆1 = 𝑆(𝐼 − (𝑈 − 𝑉)𝑆)−1 is a required operator. 

Theorem is proved. 

Now we consider the Noetherian perturbations of 

𝑐�̃�-atomic decompositions.  

Theorem 4.4. Let the mappings 𝐹:𝛺 → 𝐿(𝑍, 𝑋) 

and 𝛬: 𝛺 → 𝐿(𝑋, 𝑍) be such that (𝐹, 𝛬) is a 𝑐�̃�-atomic 

decomposition in 𝑍 with the bounds 𝐴 and 𝐵. Let 𝑊 be 

a Banach space, 𝑁 ∈ 𝐿(𝑍,𝑊) be a Noetherian operator 

and 𝛤(𝜔) = 𝑁𝛬(𝜔), 𝜔 ∈ 𝛺. Then there exists a 

mapping 𝐺:𝛺 → 𝐿(𝑊, 𝑋) such that (𝐺, 𝛤) is a  

𝑐�̃�-atomic decomposition in 𝐼𝑚 𝑁.  

Proof. The Noetherianness of the operator 𝑁 

implies that 𝑘𝑒𝑟 𝑁 is complementable in 𝑍. Let  

𝑍 = 𝑘𝑒𝑟 𝑁 + 𝑍1. Denote the restriction of the operator 

𝑁 to 𝑍1 by 𝑁1. It is clear that the operator 𝑁1 maps 𝑍1 

into 𝐼𝑚 𝑁 and 𝑘𝑒𝑟 𝑁1 = {0}. Then the operator 𝑁1 has 

a bounded inverse 𝑁1
−1 in 𝐼𝑚 𝑁. Let  

𝐺(𝜔) = 𝐹(𝜔)𝑁1
−1, 𝜔 ∈ 𝛺. ∀𝑤 ∈ 𝐼𝑚 𝑁 we have 

 
‖𝐺(⋅)𝑤‖�̃� = ‖𝐹(⋅)𝑁1

−1𝑤‖�̃� ≤ 𝐵‖𝑁1
−1𝑤‖𝑍 ≤ 𝐵‖𝑁1

−1‖‖𝑤‖𝑊, 

and 

‖𝐺(⋅)𝑤‖�̃� = ‖𝐹(⋅)𝑁1
−1𝑤‖�̃� ≥ 𝐴‖𝑁1

−1𝑤‖𝑍 ≥ 𝐴‖𝑁1‖
−1‖𝑤‖𝑊, 

 

i.e. 𝐺 is a 𝑐�̃�-frame in 𝐼𝑚 𝑁. Take ∀ℎ ∈ 𝑊∗ and ∀𝑤 ∈ 𝐼𝑚 𝑁. Using condition 

3) of Definition 2.2, we obtain  

 

(𝑤, ℎ) = (𝑁1
−1𝑤, ℎ𝑁) = (𝐹(⋅)𝑁1

−1𝑤, ℎ𝑁𝛬(⋅)) = (𝐺(⋅)𝑤, ℎ𝛤(⋅)). 

 

Thus, (𝐺, 𝛤) is a 𝑐�̃�-atomic decomposition in 

𝐼𝑚 𝑁. Theorem is proved. 

Theorem 4.5. Let (𝐹, 𝑆) be a Banach 𝑐�̃�-frame in 

𝑍, 𝑊 be a Banach space, 𝑁 ∈ 𝐿(𝑍,𝑊) be a Noetherian 

operator and 𝑆1 = 𝑁𝑆. Then there exists a mapping 

𝐺: 𝛺 → 𝐿(𝑊, 𝑋) such that (𝐺, 𝑆1) is a Banach  

𝑐�̃�-frame in 𝐼𝑚 𝑁.  

Proof. Assume that 𝑍1 is a complement of 𝑘𝑒𝑟 𝑁 

in 𝑍 and 𝑁1 is a restriction of the operator 𝑁 to 𝑍1. The 

operator 𝑁1 has a bounded inverse 𝑁1
−1 in 𝐼𝑚 𝑁. Using 

the same reasoning as used in the proof of Theorem 4.4, 

we obtain that the mapping 𝐺: 𝛺 → 𝐿(𝑍, 𝑋) is such that 

𝐺(𝜔) = 𝐹(𝜔)𝑁1
−1, 𝜔 ∈ 𝛺, is a 𝑐�̃�-frame in 𝐼𝑚 𝑁. 

Next, for ∀𝑤 ∈ 𝐼𝑚 𝑁 we have 

𝑆1(𝐺(⋅)𝑤) = 𝑁𝑆(𝐹(⋅)𝑁1
−1𝑤) = 𝑁𝑁1

−1𝑤 = 𝑤. 

Thus, (𝐺, 𝑆1) is a Banach 𝑐�̃�-frame in 𝐼𝑚 𝑁. 

Theorem is proved. 

Let �̃� be a Banach space of operator-valued 

mappings �̃� = 𝛬(⋅), 𝛬(𝜔):𝛺 → 𝐿(𝑋, 𝑍). 

Definition 4.1. Mappings 𝛬: 𝛺 → 𝐿(𝑋, 𝑍) and 

𝛤: 𝛺 → 𝐿(𝑋, 𝑍) are called �̃�-close if 𝛬(⋅) − 𝛤(⋅) ∈ �̃�.  

Consider the stability of a 𝑐�̃�-atomic 

decomposition for �̃�-close mappings. The following 

theorem is true. 

Theorem 4.6. Let �̃�∗ be normally subordinate to 

�̃�, the mappings 𝐹:𝛺 → 𝐿(𝑍, 𝑋) and 𝛬: 𝛺 → 𝐿(𝑋, 𝑍) be 

such that (𝐹, 𝛬) is a 𝑐�̃�-atomic decomposition in 𝑍 with 

the bounds 𝐴 and 𝐵. Let the mapping 𝛤: 𝛺 → 𝐿(𝑋, 𝑍) 

be �̃�-close to 𝛬 and ‖𝛬(⋅) − 𝛤(⋅)‖�̃� <
1

𝐵
. Then there 

exists a mapping 𝐺: 𝛺 → 𝐿(𝑍, 𝑋) such that (𝐺, 𝛤) is a 

𝑐�̃�-atomic decomposition in 𝑍.  

Proof. Since for any 𝑓 ∈ 𝑍∗ we have  

‖𝑓𝛬(𝜔) − 𝑓𝛤(𝜔)‖ ≤ ‖𝑓‖‖𝛬(𝜔) − 𝛤(𝜔)‖, 𝜔 ∈ 𝛺, 

 

and �̃�∗ is normally subordinate to �̃� we obtain 

 
‖𝑓𝛬(⋅) − 𝑓𝛤(⋅)‖�̃�∗ ≤ ‖𝑓‖‖𝛬(⋅) − 𝛤(⋅)‖�̃�. 

 

Consider the operator 𝐾: 𝑍 → 𝑍 defined by the formula  

 

(𝐾𝑧, 𝑓) = (𝐹(⋅)𝑧, 𝑓𝛬(⋅) − 𝑓𝛤(⋅)), ∀𝑓 ∈ 𝑍∗, ∀𝑧 ∈ 𝑍. 

Then  
‖𝐾𝑧‖ = 𝑠𝑢𝑝

‖𝑓‖=1
|(𝐾𝑧, 𝑓)| = 𝑠𝑢𝑝

‖𝑓‖=1
|(𝐹(⋅)𝑧, 𝑓𝛬(⋅) − 𝑓𝛤(⋅))| ≤ 

≤ ‖𝐹(⋅)𝑧‖�̃� 𝑠𝑢𝑝
‖𝑓‖=1

‖𝑓(𝛬(⋅) − 𝛤(⋅))‖�̃�∗ ≤ 𝐵‖𝛬(⋅) − 𝛤(⋅)‖�̃�‖𝑧‖𝑍 < ‖𝑧‖𝑍. 

 

Thus, the operator 𝐷 = 𝐼 − 𝐾 is boundedly 

invertible. Let 𝐺(𝜔) = 𝐹(𝜔)𝐷−1, 𝜔 ∈ 𝛺. Then 𝐺 

forms a 𝑐�̃�-frame in 𝑍. The last condition in Definition 

2.2 implies (𝑧, 𝑓) = (𝐹(⋅)𝑧, 𝑓𝛬(⋅)), ∀𝑓 ∈ 𝑍∗, ∀𝑧 ∈ 𝑍. 

Then (𝐷𝑧, 𝑓) = (𝐹(⋅)𝑧, 𝑓𝛤(⋅)). Next, for ∀𝑧 ∈ 𝑍 and 

∀𝑓 ∈ 𝑍∗we obtain  
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(𝑧, 𝑓) = (𝐷𝐷−1𝑧, 𝑓) = (𝐹(⋅)𝐷−1𝑧, 𝑓𝛤(⋅)) = (𝐺(⋅)𝑧, 𝑓𝛤(⋅)). 

 

Therefore, (𝐺, 𝛤) is a 𝑐�̃�-atomic decomposition in 

𝑍. Theorem is proved. 

In case where (𝛺, 𝜇) is a measurable space,  

�̃� = 𝐿𝑝(𝛺, 𝜇, 𝑋), 𝑝 ∈ (1;+∞) and  

�̃� = 𝐿𝑞(𝛺, 𝜇, 𝐿(𝑋, 𝑍)), 
1

𝑝
+

1

𝑞
= 1, Theorem 4.6 has the 

following corollary.  

Corollary 4.1. Let the mappings 𝐹: 𝛺 → 𝐿(𝑍, 𝑋) 

and 𝛬: 𝛺 → 𝐿(𝑋, 𝑍) be such that (𝐹, 𝛬) is a 

𝑐𝐿𝑝(𝛺, 𝜇, 𝑋) -atomic decomposition in 𝑍 with the 

bounds 𝐴 and 𝐵, and let the mapping 𝛤: 𝛺 → 𝐿(𝑋, 𝑍) 

satisfy the condition  

∫ ‖𝛬(𝜔) − 𝛤(𝜔)‖𝑞
𝛺

𝑑𝜇 < 𝐵−𝑞. 

Then there exists a mapping 𝐺: 𝛺 → 𝐿(𝑍, 𝑋) such 

that (𝐺, 𝛤) is a 𝑐𝐿𝑝(𝛺, 𝜇, 𝑋) -atomic decomposition in 

𝑍.  
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