Список авторов:

Chernyshev A.V. Ph.D. in Technology, associate professor, Institute of Applied Physics NAS of Belarus, Minsk Zagorski I.E. Senior Researcher, Institute of Applied Physics NAS of Belarus, Minsk


Summary: Previously experimental studies of higher harmonic components of magnetic induction showed,
that when a ferromagnetic sample is magnetized by a constant magnetic field and simultaneously is remagnetizated
by a «weak» alternating field, the resulting minor hysteresis loop is asymmetric. The form of the branches of such
cycle corresponds to the quadratic parabola, as well as at symmetric Rayleigh’s loop. In this article it is shown
mathematically that in such asymmetrical minor loop reversible component of magnetization changes according
to the parabolic law. The irreversible component of the magnetization changes in this case along a symmetric
minor loop. In symmetrical Rayleigh’s minor loop, as is known, reversible component is a linear function of the
strength of external magnetic field.

Ключевые слова:

Key words: Rayleigh's formula, minor hysteresis loop, symmetrical, asymmetrical minor loop, reversible, irreversible component, parabola. View Fullscreen


1. Chernyshev A.V. About the Formation of the
Second Harmonic Component of Magnetization under
Weak Alternating Exciting Fields // Russian Journal of
Nondestructive Testing. 2004. V. 40, № 5. P. 326 –
2. Jiles D. C. Hysteresis Models: non-linear
Magnetisation on Length Scales from the Atomistic to
the Macroscopic // JMMM. 2002. V. 242-245. Pt. 1. P.
3. Jiles D. C., Atherton D. L. Theory of Ferro-
magnetic Hysteresis // JMMM. 1986. V. 61, № 1-2. P.
4. Bertotti G., Basso V., Pasquale M. Applica-
tion of the Preisach Model to the Calculation of Mag-
netization Curves and Power Losses in Ferromagnetic
Materials // IEEE Trans. on Magn. 1994. V. 30, № 2. P.
5. Della Torre E., Bennett L. Analysis and simu-
lations of magnetic materials // Discrete and continuous
dynamical systems // Supplement Volume 2005. P.
6. Lord Rayleigh. On the Behaviour of Iron and
Steel under the Operation of Feeble Magnetic Forces //
Phil. Mag. 1887. V. 23, № 142. P. 225245.
7. Włodarski Z. Analytical description of mag-
netization curves // Physica B. 2006. V. 373. P.
8. Chikazumi S. Physics of Ferromagnetism. 2-
nd edition. Oxford University Press, 1997. 668 p.
9. Bozorth R. Ferromagnetism. – New York,
Van Nostrand, 1951. 958 p.
10. Magnetism. Fundamentals. (Edited by E. du
Tremolet de Lacheisserie, D. Gignoux, M. Schlenker.).
– Springer, 2005. 532 p.
11. Basso V., LoBue M., Bertotti G. Experimental
Analysis of Reversible Processes in Soft Magnetic Ma-
terials // IEEE Trans. Magn. 1994. V. 30, № 6. P.
12. Porteseil J., Vergne R., Cotillard J. Déplace-
ments d’une Paroi de Bloch a 180 dans un Monocristal
de Fer-silicium // Le J. de Phys.  1977.  Vol. 38, №
12. P. 15411552.
13. Tebble R. S., Corner W. D. Investigation on
the Reversible Susceptibility of ferromagnetics // Pro-
ceed. Phys. Soc., Sect. B. 1950. V. 63, № 12. P. 1005
14. Escobar M.A., Valenzuela R., Magana. L.F.
Analytical prediction of the magnetization curve and
the ferromagnetic hysteresis loop // J. Appl. Phys.1983.
V. 54. P. 59355940.
15. Jiles D.C. Dynamics of Domain Magnetiza-
tion and the Barkhausen Effect // Czechoslovak J. Phys.
2000. V. 50. P. 893923.
16. Bertotti G. Hysteresis in Magnetism. – Aca-
demic Press, 1998. 558 p.
17. Feu A., Treba A. Nonlinear reversible pro-
cesses in YIG: An explanation for the Rayleigh loop
anomalies // J. Appl. Phys. 1974. V. 45. P. 5033-5036.
18. Chernyshev A.V. [The dependence of the re-
versible component of the magnetization of a ferromag-
netic by the strength of the magnetizing field for a flex-
ible domain walls]. Control. Diagnostics, 2011, no. 5,
pp. 30-37 (In Russian).
19. Chernyshev A.V. Dependence of the Reversi-
ble Magnetic Permeability of Steel Samples on a Bias-
ing Field Strengt // The Physics of Metals and Metal-
lography. 2001. V. 92, №5. P. 49-54.
20. Cammarano R., McCormick P. G., Street R.
The Interrelation of Reversible and Irreversible Mag-
netization // J. Phys. D: Appl. Phys. 1996. Vol. 29. P.