О научном издательстве ►
  • О журнале
  • Индексирование
  • Редакционная коллегия
  • Цели и задачи
  • Соответствие стандарту I4OC
  • Архивация и депонирование

Восточно Европейский Научный Журнал

  • Главная
  • Авторам
    • От главного редактора
    • Оформление научной статьи
    • Этика научных публикаций
    • Политика открытого доступа
    • Образец научной статьи
    • Анкета автора
    • Редакционный сбор
    • Рецензирование статей
  • Редакционный сбор
  • Архив журнала
  • Сроки и условия
    • Договор оферты
    • Политика доставки и возврата
    • Политика конфиденциальности
  • Контакты
  • Языки
    • Ukrainian
    • Polish
    • Russian
◄ Меню сайта
Анкетаавтора
  • Главная
  • Журналы
  • Технические науки
  • DEEP LEARNING APPROACHES FOR BIG DATA ANALYTICS: OPPORTUNITIES, ISSUES AND RESEARCH DIRECTIONS (26-33)

DEEP LEARNING APPROACHES FOR BIG DATA ANALYTICS: OPPORTUNITIES, ISSUES AND RESEARCH DIRECTIONS (26-33)

Подать статью в SCOPUS

DEEP LEARNING APPROACHES FOR BIG DATA ANALYTICS: OPPORTUNITIES, ISSUES AND RESEARCH DIRECTIONS (26-33)

Архив в PDF формате
Дата публикации статьи в журнале: 2020/09/09
Название журнала: Восточно Европейский Научный Журнал, Выпуск: 60, Том: 3, Страницы в выпуске: 26-33
Автор: Hajirahimova M. Sh.
Baku, Institute of Information Technology of ANAS, PhD. in Technical sciences, associate professor
Автор: Aliyeva A. S.
Baku, Institute of Information Technology of ANAS, Senior researcher
Анотация: Over the last few years, Deep learning has begun to play an important role in analytics solutions of Big Data. Deep learning is one of the most active research fields in machine learning community. It has gained unprecedented achievements in fields such as computer vision, natural language processing and speech recognition. The ability of deep learning to extract high-level complex abstractions and data examples, especially unsupervised data from large volume data, makes it attractive a valuable tool for Big Data analytics. In this paper, discuss the challenges posed by Big Data analysis. Next, presented typical deep learning models, which are the most widely used for Big Data analysis and feature learning. Finally, have been outlined some open issues and research trends.
Ключевые слова: Big data   Big data analytics   machine learning   deep learning   deep neural networks  
Данные для цитирования: Hajirahimova M. Sh. , Aliyeva A. S. , . DEEP LEARNING APPROACHES FOR BIG DATA ANALYTICS: OPPORTUNITIES, ISSUES AND RESEARCH DIRECTIONS (26-33). Восточно Европейский Научный Журнал. Технические науки. 2020/09/09; 60(3):26-33.

Скачать в формате PDF

Список литературы: 1. Aliguliyev R.M., Hajirahimova M.Sh. Big Data phenomenon: Challenges and Opportunities// Problems of Information Technology, 2014, vol. 10, no. 2, pp. 316. 2. Aliguliyev R.M., Hajirahimova M.Sh, Aliyeva A.S. Current scientific and theoretical problems of Big Data// Problems of information society. 2016, no. 2, pp. 34–45. 3. Chen Xue-W. Big Data Deep Learning: Challenges and Perspectives// IEEE Access journal. 2014, vol. 2, pp. 514-525. 4. Najafabadi M., Villanustre F., Khoshgoftaar T. et al. Deep Learning applications and challenges in Big Data analytics// Journal of Big Data. 2015, vol.2, no.1, pp.2-21. 5. Elaraby N. M., Elmogy M., Barakat Sh. Deep Learning: Effective Tool for Big Data Analytics// International Journal of Computer Science Engineering. 2016, vol.5, no.5, pp. 254-262. 6. Jan B. Deep learning in Big Data Analytics: A comparative study// Computers and Electrical Engineering. 2017, vol.7, no. 24, pp. 1-13. 7. Zhang Q., Yang L. T., Chen Z. et al. A survey on deep learning for Big Data// Information Fusion, 2018, vol. 42, pp. 146–157. 8. Wang L., Alexander Ch.A. Machine Learning in Big Data// International Journal of Mathematical, Engineering and Management Sciences. 2016, vol. 1, no. 2, pp. 52–61. 9. Sivarajah U., Kamal M.M., Irani Z. et al. Critical analysis of Big Data challenges and analytical methods// Journal of Business Research. 2017, vol. 70, pp. 263–286. 10. Oussous A., Benjelloun F.-Z., Lahcen A. A. et al. Big Data technologies: A survey// Journal of King Saud University: Computer and Information Sciences. 2018, vol. 30, pp. 431–448. 11. Philip Chen C. L., Zhang C.-Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data// Information Sciences. 2014, vol. 275, no. 10, pp.314-347. 12. Tarwani K.M., Saudagar S.S., Misalkar H.D. Machine learning in Big Data analytics: an overview// International Journal of Advanced Research in Computer Science and Software Engineering. 2015, vol. 5, no. 4, pp. 270-274. 13. Suthaharan S. Big Data classification: problems and challenges in network intrusion prediction with machine learning// Performance Evaluation Review. 2014, vol. 41, no. 4, pp. 70-73. 14. Memudu M. T., Obidallah W., Raahemi B. Applying Deep Learning Techniques for Big Data Analytics: A Systematic Literature Review// Archives of Information Science and Technology. 2018, vol.1, no. 1, pp. 20-41. 15. Wu F., Wang Z., Zhang Z. et al. Weakly semisupervised deep learning for multi-label image annotation// IEEE Trans Big Data. 2015, vol.2, pp.109122. 16. Pouyanfar S., Chen S.C. T-LRA: Trend-based learning rate annealing for deep neural networks// Proceeding of the IEEE 3rd International Conference on Multimed Big Data (BigMM). 2017, pp. 50-57. 17. Graves A., Mohamed A., Hinton G. Speech recognition with Deep Recurrent Neural Networks// Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing. 26-31 May 2013, pp. 6645 – 6649. DOI: 10.1109/ICASSP.2013.6638947 18. Cho K., Merrienboer B., Gulcehre C. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation// Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014, pp. 1724–1734. 19. Chung J., Gülçehre C., Cho K. et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 2014, https://arxiv.org/abs/1412.3555 20. Liu G., Bao H., Han B. A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis// Mathematical Problems in Engineering. 2018, vol. 2018, no. 5, pp. 110. 21. Hinton G.E., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets// Neural computation, 2006, vol. 18, no. 7, pp. 1527–1554. 22. Zhang J., Han Y., Jiang J. Semi-supervised tensor learning for image classification// Multimedia Systems. 2017, vol. 23, no. 1, pp. 63-73. 23. Novikov A., Podoprikhin D., Osokin A. et al. Tensorizing neural netwroks// presented at the Advances in Neural Information Processing Systems, MIT, pp. 442–450, 2015. 24. Zhang Q., Yang L.T., Chen Z. Deep computation model for unsupervised feature learning on Big Data// IEEE Trans Services Comput. 2016, vol. 9, pp. 61–71. 25. Wang X., He Y. Learning from Uncertainty for Big Data: Future Analytical Challenges and Strategies// IEEE Systems, Man, & Cybernetics Magazine. April 2016, pp. 26-32. 26. Zheng Y. Urban Computing, Cambridge, The MİT Press, 2018, 609 p. 27. Ngiam J., Khosla A., Kim M. et al. Multimodal deep learning// Proceedings of the International Conference on Machine Learning, ACM, 2011, pp. 689–696. 28. Srivastava N., Salakhutdinov R. Multimodal learning with deep boltzmann machines// Proceedings of Advances in Neural Information Processing Systems, MIT. 2012, vol.25, pp. 2231–2239. 29. Ouyang W., Chu X., Wang X. Multi-source deep learning for human pose estimation// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE. 2014, pp. 2337–2344. 30. Zhang Q., Yang L. T., Chen Z. Deep computation model for unsupervised feature learning on Big Data// IEEE Transactions on Services Computing. 2016, vol.9, no.1, pp. 161–171. 31. Chen M., Xu Z.E., Weinberger K.Q. et al. Marginalized denoising autoencoders for domain adaptation// Proceeding of the 29th International Conference in Machine Learning, Edingburgh, Scotland, 2012. 32. Krizhevsky A., Sutskever I., Hinton G. Imagenet classification with deep convolutional neural networks// Advances in Neural Information Processing Systems. Curran Associates, Inc. 2012, vol. 25. pp 1106–1114. 33. Haupt J., Kahl S., Kowerko D. et al. LargeScale Plant Classification using Deep Convolutional Neural Networks, 2019, http://ceur-ws.org/Vol- 2125/paper_92.pdf) 34. Maggiori Y., Tarabalka G., Charpiat P.A. Convolutional neural networks for large-scale remotesensing image classification// IEEE Transactions on Geoscience and Remote Sensing. 2017, vol.55, no. 2, pp. 645–657. 35. Jia Z., Zaharia M., Aiken A. Beyond data and model parallelism for deep neural networks. arXiv:1807.05358v1 [cs.DC] 14 Jul 2018, pp.1-15. https://arxiv.org/pdf/1807.05358.pdf 36. Dean J., Corrado G. S., Chen K. et al. Large scale distributed deep networks// Proceedings of NIPS. 2012, pp. 1232–1240. 37. Sun P., Feng W., Han R. et al. Optimizing Network Performance for Distributed DNN Training on GPU Clusters: ImageNet/AlexNet Training in 1.5 Minutes/ arXiv preprint arXiv:1902.06855, 2019. 38. Coats A., Huval B., Wng T. et al. Deep learning with COTS HPC systems// J. Mach. Learn. Res. 2013, vol.28, pp. 1337–1345. 39. Zhou G., Sohn K., Lee H. Online incremental feature learning with denoising autoencoders/ Proceedings of the International Conference on Artificial Intelligence and Statistics. JMLR.org. 2012, pp 1453–1461. 40. Calandra R., Raiko T., Deisenroth M.P. et al. Learning deep belief networks from non-stationary streams/ Proceedings of the International Conference on Artificial Neural Networks and Machine Learning, Berlin Heidelberg, 2012, pp 379–386. 41. Li Y., Zhang M., Wang W. Online Real-Time Analysis of Data Streams Based on an Incremental High-Order Deep Learning Model// IEEE Access. 2018, vol. 6, pp. 77615 – 77623. 42. Wang R., Tao D. Non-local auto-encoder with collaborative stabilization for image restoration// IEEE Transactions on Image Processing. 2016, vol. 25, no. 5, pp. 2117–2129. 43. Mao X., Shen Ch., Yang Y.-B. Image restoration using very deep convolutional encoderdecoder networks with symmetric skip connections// Advances in Neural Information Processing Systems. 2016, vol. 29, pp. 2802–2810. 44. Zhang K., Zuo W., Chen Y. et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising// IEEE Transactions on Image Processing. 2017, vol. 26, no. 7, pp. 3142 – 31555. 45. Bu F., Chen Z., Zhang Q. Incomplete Big Data mpputation algorithm based on deep learning// Microelectronics & Computer. 2014, vol. 31, no. 12, pp. 173–176. 46. Valsesia D., Fracastoro G., Magli E. Image denoising with graph-Convolutional Neural Networks/ Proceeding of the 2019 IEEE International Conference on Image Processing (ICIP), 22-25 Sept. 2019, pp. 2399 - 2403.


ISSN: 2782-1994
DOI: 10.31618/EESA.2782-1994

ICI Journal Master List 2019
ICV 2019: 64.33

Журнал имеет Импакт Фактор (Impact Factor)

Для авторов

заполнить анкету автора
оплатить ред. сбор

Поиск по изданию

Все Начиная с 2016 г.
Статистика цитирования 1307 1274
h-индекс 14 13
i10-индекс 22 19

Цитируемость научных публикаций согласно GOOGLE SCHOLAR

НАУЧНЫЕ НАПРАВЛЕНИЯ

  • Archiwum czasopisma
  • Архитектура
  • Без рубрики
  • Биологические науки
  • Ветеринарные науки
  • Военные науки
  • Географические науки
  • Геологические науки
  • Журналы
  • Искусствоведение
  • Исторические науки
  • Культурология
  • Медицинские науки
  • Науки о Земле
  • Научные новости Польши
  • Научные новости России
  • Педагогические науки
  • Политические науки
  • Психологические науки
  • Сельскохозяйственные науки
  • Социологические науки
  • Технические науки
  • Фармацевтические науки
  • Физико-математические науки
  • Филологические науки
  • Философские науки
  • Химические науки
  • Экономические науки
  • Юридические науки

Поиск по сайту

Подписка (введите свой Email)

  • Главная
  • Авторам
    • От главного редактора
    • Оформление научной статьи
    • Этика научных публикаций
    • Политика открытого доступа
    • Образец научной статьи
    • Анкета автора
    • Редакционный сбор
    • Рецензирование статей
  • Редакционный сбор
  • Архив журнала
  • Сроки и условия
    • Договор оферты
    • Политика доставки и возврата
    • Политика конфиденциальности
  • Контакты
  • Языки
    • Ukrainian
    • Polish
    • Russian
Восточно Европейский Научный Журнал

@2022. All rights reserved.

Администрация сайта не несет никакой ответственности за точность содержания информации опубликованной на сайте, а так же за любые рекомендации или мнения, которые могут содержаться в исследовательских публикациях, и за применимость её к конкретным лицам, по причине субъективности результатов авторских исследований. Кроме того, поскольку интернет не обеспечивает в полной мере надежной защиты информации, Сайт не несет ответственности за информацию, присылаемую через интернет.
TOP
404: Not Found